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Abstract—Traffic flow imputation provides a more-complete
view of traffic flows, and thus is a fundamental function in
building Intelligent Transportation Systems. The performance of
traffic flow imputation has a big impact on a wide range of
downstream applications, such as traffic forecasting and control.
Therefore, in this paper, we propose a Multi-grAph Convolutional
Recurrent netwOrk (MACRO) framework for supporting fine-
grained lane-level traffic flow imputation, which can help to
reconstruct more complete traffic flows at the lane level. Specif-
ically, we first design a spatial dependency module to model the
diversified spatial correlations within traffic flows, where multi-
relation graphs are first constructed to consider correlations from
various perspective, then a multi-graph convolution neural net-
work is proposed to capture the integrated spatial dependencies
of traffic flows and adequately propagate the observed traffic
values to mitigate data sparsity problem from spatial domain.
Also, to handle the temporally continuous data missing issue,
we adopt a modified bi-directional recurrent neural network to
capture traffic flows’ temporal dependencies by considering both
historical and future information, and employ a temporal decay
mechanism to control the irregular information transfer between
adjacent time slices. Moreover, a spatio-temporal knowledge
integration module is devised to comprehensively integrate multi-
resolution spatiotemporal knowledge for traffic flow imputation.
Finally, extensive experiments on the real-world dataset demon-
strate that the performance of MACRO outperforms several
state-of-the-art baselines with respect to traffic flow imputation.

Index Terms—Spatio-temporal Model, Traffic Data Imputa-
tion, Graph Neural Network, Recurrent Neural Network

I. INTRODUCTION

Spatio-temporal traffic data collected from various sensor
devices (e.g., loop detectors and cameras) is the basis for a
wide range of important applications in Intelligent Transporta-
tion Systems (ITS) [1], [2]. But in reality, many unpredictable
systematic failures, such as equipment damage and commu-
nication error, usually interrupt data collection of the sensors,
which results in severe data missing issues and significantly
destroys the validity of collected data [3]–[5]. To this end,
traffic flow imputation is proposed to impute the missing
traffic values based on the uncompleted observed traffic data,
which is a fundamental ability towards building effective ITS,
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Fig. 1. An illustrative example of road network.

and indeed benefits various downstream applications, such as
traffic flow forecasting and control.

Traffic flow imputation problem has attracted extensive
attention from both academia and industry [6], [7]. The early
studies mainly rely on the statistical methods, such as linear
interpolation [4] and ARIMA [8]. Since traffic data is usually
collected by multiple fixed sensors at fixed time points, some
studies formulate them as the format of matrix or tensor, and
introduce the low-rank matrix/tensor completion methods for
imputation [9]–[11]. Recently, studies widely leverage deep
learning methods to capture more complex spatio-temporal
dependencies within data [12]–[14]. For example, Graph Neu-
ral Networks (GNNs) have shown a strong capability to
model spatial non-Euclidean dependencies between multiple
sensors located in the irregular road network [15]–[17], and
Recurrent Neural Networks (RNN) are widely used to capture
the temporal dependencies within data [18]–[20]. However,
existing studies mainly investigate the data imputation for
branch roads’ traffic flows. In reality, as shown in Fig. 1,
a crossroad can contain multiple branches, and each branch
consists of multiple lanes. To achieve a meticulous awareness
for dynamic traffic situations, it is essential to consider the
real-time traffic state of each lane, which is a more finer-
grained and complicated scenario that has been rarely studied
before.

In this paper, we investigate a new Lane-Level Traffic Flow
Imputation (LTFI) problem, which aims to impute traffic flow
for each lane involving a more finer-grained and complicated
dynamic traffic scenario. However, it is a non-trivial task,
which faces the following technical challenges. The first chal-



lenge comes from the diversified spatial correlations within
lane-level traffic flows, which can be induced by physical
traffic connectivity, geographical proximity and traffic pat-
tern’s similarity between multiple lanes. These correlations
are non-Euclidean and cause integrated spatial dependencies
of different lanes, which are challenging to capture. The
second challenge is the severe spatio-temporal data sparsity.
Different sensors’ data may irregularly miss at different time,
and even the data missing issue could appear in a particular
whole area at some time. Besides, since many systematic
failures of sensors cannot be recovered immediately, which
causes temporally continuous data missing. The severe spatio-
temporal data sparsity leads to spatio-temporal dependencies
extremely irregular, which is intractable to model. Finally, it is
challenging for spatio-temporal knowledge integration. There
are substantial knowledge from both spatial and temporal
domains. However, since the spatio-temporal factors deeply
interplay with each other in different resolution, it’s hard to
comprehensively integrate the spatio-temporal knowledge.

To tackle above challenges, in this work, we propose
a Multi-grAph Convolutional Recurrent netwOrk (MACRO)
for LTFI problem. Specifically, MACRO consists of three
components. First is a Spatial Dependency Module. We con-
struct the multi-relation graphs to consider the diversified
correlations between lanes from perspectives of connectivity,
adjacency, and similarity. Then a multi-graph convolution
neural network is proposed to model the integrated spatial
dependencies of lane-level traffic flows, in which a diffusion
graph convolution layer is adopted to aggregate the observed
traffic information from different-order neighbors for miti-
gating the severe data sparsity problem in spatial domain.
Then an attentive multi-graph fusion layer is further devised
to comprehensively integrate traffic knowledge of lanes from
multiple graph perspectives. Second is a Temporal Depen-
dency Module. We introduce the Bi-directional Long Short-
Term Memory (Bi-LSTM) to capture temporal dependencies
with consideration of both historical and future information.
Furthermore, to handle the temporally continuous data missing
issue, a temporal decay mechanism is employed to control
the irregular information transfer between adjacent time slices.
Finally, a Spatio-Temporal Knowledge Integration Module is
devised to comprehensively integrate multi-resolution spatio-
temporal knowledge for traffic flow imputation. Specifically,
we first incorporate the learned representation from both
spatial and temporal domains at each time slice to derive
the micro knowledge representation. Then a tailored-designed
autoencoder module is proposed to capture the distribution
of traffic data from a global spatio-temporal perspective, and
serves as an initialization of the temporal dependency module
to provide a macro guidance for imputation. In summary, our
major contributions are summarized as:

• We investigate a new fine-grained lane-level traffic flow
imputation problem, which involves a more fine-grained
and complicated dynamic traffic scenario. To best of our
knowledge, we are among the first one to study lane-level

traffic flow imputation problem.
• We design a multi-graph convolutional recurrent network

for lane-level traffic flow imputation, where a multi-graph
convolution neural network is designed to model the di-
versified spatial correlations within lane-level traffic flows
and mitigate data sparsity problem from spatial domain,
then a modified bi-directional recurrent neural network
with temporal decay mechanism is applied to handle the
temporally continuous data missing issue, lastly a spatio-
temporal knowledge integration module is proposed to
comprehensively integrate the multi-resolution spatio-
temporal knowledge for imputation.

• We conduct extensive experiments on the real-world
dataset, and the results demonstrate that our approach
achieves the best performance against several competitive
baselines in lane-level traffic flow imputation problem.

II. RELATED WORK

Previous studies on traffic data imputation can be mainly
categorized into three classes, namely statistical methods,
tensor-based methods and deep learning methods.

Statistical methods impute the traffic flow values by con-
sidering the proximity of temporal and spatial domains. For
example, [4] fill the missing data based on temporal and spatial
interpolation. [8], [21] study traffic periodical characteristics
and estimate the missing values by the ARIMA model. [22]
impute erroneous data by exploiting the relationship between
detector flows using linear regression. [23], [24] compare the
temporal correlations in traffic flow series, and aggregate K-
Nearest Neighbours’(KNN) values to estimate the missing
data. However, these statistical methods impute traffic data
mainly by exploiting simple and explicit proximity, which fails
to capture the latent patterns and complicated dependencies
within real traffic data.

Tensor-based methods formulate traffic data imputation
task as a tensor completion problem, then introduce typical
matrix or tensor based approach for imputation with cap-
turing the latent patterns in traffic flow. For instance, [25],
[26] utilize Principle Component Analysis (PCA) algorithm
to study the relationship between observed data and latent
variables, then estimate the missing values by a probabilis-
tic model. [9] propose a tensor decomposition method to
capture the high dimensional temporal inherent correlations
within traffic flow data. [11] incorporate generic forms of
domain knowledge from transportation systems to discover
traffic flow pattern. [27] characterize temporal dependency
on neighboring fragments of traffic flow by using a state
transition matrix with low-rank regularization. [10] employ a
low rank auto-regressive tensor completion method to capture
local and global temporal consistency of the data. Although
these methods attempt to capture latent patterns within the
traffic flows, they are not incapable of capturing the spatial
knowledge within traffic data.

Recently, deep learning methods are widely developed for
the missing data imputation task to capture more compli-
cated temporal and spatial non-linear dependencies. Recurrent



Neural Networks (RNN) have been proved their capability to
capture the temporal dependency for time series data [15],
[28]. To apply RNN into time series imputation, [18], [19]
propose variant RNN models by considering temporal decay
coefficient to overcome the continuous missing value problem.
[29] propose a stacked multiple auto-encoder layers mecha-
nism to learn the spatio-temporal dependency represented in
low-dimensional latent space, then the auto-encoder models
impute the missing values by transforming the sparse observed
data into latent space and reconstructing the completed data.
Moreover, some works introduce Generative Adversarial Net-
works (GAN) [30] into missing data imputation by adopting a
discriminator to reduce the error between estimated value and
ground truth. For example, [31] adopt a generator to imputes
the missing components based on observed data, and employ
a discriminator to discriminate the observed and imputed com-
ponents. [32] further introduce a new loss function to balance
the adversarial and facilitated relations between discriminator
and constructor. Particularly, some recent studies successfully
apply graph representation learning techniques into traffic
forecasting [15], [17], [33], traffic volume inference [34] and
time series imputation [16] tasks to model the complicated
spatial dependencies within data. [34] adopt multi-view graph
embedding to encode the multi-hop correlations between road
segments into real-valued vectors with modeling trajectories
data for the citywide traffic volume inference. [16] introduce
a graph neural network architecture to reconstruct the missing
data in the different channels of a multivariate time series
by learning spatio-temporal representations through message
passing. However, existing deep learning based studies mainly
focus on general time series or branch-level traffic data im-
putation, whereas we investigate the lane-level traffic data
imputation problem in a more fine-grained scenario.

III. PRELIMINARY

In this section, we first introduce the real-world dataset used
in our study, and then conduct several preliminary analysis
towards the collected data. Finally, we formally define the
problem of traffic flow imputation.

A. Data Description

We collected real-world traffic data from Baoding, China,
which contains two types of information, i.e., road network
data and sensor-collected traffic flow data.

The basic elements in road network are crossroad, branch
and lane. And road network data contains the detailed in-
formation of these basic elements, including coordinate and
direction. In addition, some relations between different ele-
ments are included. The first one is the belonging relation.
Generally, each lane belongs to a specific branch, and each
branch belongs to a specific crossroad. The second one is the
connectivity relation, which indicates the reachability between
different crossroads or branches. According to the traffic
direction, the branch road can be divided into two types: the
in-branch entering the crossroad and the out-branch leaving
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Fig. 2. Hourly traffic flow distribution on weekdays and weekends.
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Fig. 3. The characteristics of our data, (a) the missing ratio of different lanes,
(b) the distribution of time slice lengths with continuous missing values.

the crossroad. In a similar way, lanes can also be divided into
two types, namely in-lanes and out-lanes respectively.

Traffic flow data is collected by the distributed sensors.
In our scenario, only in-lanes are equipped with sensors to
monitor traffic flow. Specifically, the sensor records the total
amount of traffic flow in a fixed time interval, such as 5
minutes, and then sends the record with the corresponding
timestamp to the central server. We can align these traffic flow
records of different in-lanes according to the timestamp. Due
to the unpredictable systematic failures, such as equipment
damage and communication error, the data collection would
be interrupted, which results in severe data missing issues.

B. Data Exploration

In general, urban traffic conditions are extremely complex,
which highly correlate with people’s mobility and activities.
We explore the traffic pattern from daily perspective. Figure 2
presents the daily traffic pattern of weekday and weekend.
Obviously, there is a big difference between the daily patterns
on weekdays and weekends. For example, morning peak hours
on weekdays are in the range 7:00 ∼ 9:00, while morning
peak hours on weekends are in the range 10:00 ∼ 12:00.
As a result, it’s very challenging to model such diversified
correlation patterns within severely sparse traffic flow data.

Next, we analyze the characteristics of our data. After data
preprocessing, we found the real-world dataset is pretty sparse,
whose sparsity ratio is about 54%. Fig. 3(a) shows the missing
ratio of different lanes. About 40% of lanes have more than
50% missing rates. Even 20% of the lanes are with 100%
missing ratio. Apart from that, continuous missing values issue
commonly exists in our data. Fig. 3(b) shows the distribution
of time slice lengths with continuous missing values. The
proportion of consecutive missing cases is about 45%. And
the time slice length of continuous missing values is mainly
concentrated between 2 to 5. These data sparsity issues pose
great challenges for imputation.
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Fig. 4. The diagrammatic sketch of the proposed MACRO framework for
lane-level traffic flow imputation.

C. Problem Formulation

Let X = {x1,x2, ...,xT } denote the traffic flow volume
of different lanes perceived by the sensors, where xt ∈ RN

presents the traffic flow of all lanes at time slice t. T and
N denote the number of time slices and lanes respectively.
Without loss of generality, we set the interval between dif-
ferent time slices as the same. As mentioned before, due to
many unpredictable systematic failures, X is partially filled.
Correspondingly, we can construct a mask matrix M =
{m1,m2, ...,mT } ∈ RN×T , where mti = 1 if xti is
observed, and mti = 0 if xti is missing. The LTFI problem
is defined as follows:

Given the partially observed traffic flow matrix of lanes X
with the mask matrix M, and the information of road network
(e.g., the belonging relations between lanes and branches, the
connectivity between branches, and the geographic informa-
tion of lanes), our target is to construct the completed traffic
volume matrix X̂ by imputing missing values.

IV. METHODOLOGY

In this section, we first present the framework overview of
our proposed Multi-grAph Convolutional Recurrent netwOrk
(MACRO); then we introduce its spatial dependency module,
the temporal dependency module, and spatio-temporal knowl-
edge integration module in more details.

A. Framework Overview

Fig. 4 shows an architecture overview of our proposed
MACRO framework. The MACRO framework takes the par-
tially observed traffic flows as input and imputes the missing
values with three different modules: (i) the Spatial Dependency
Module (the lower left part) is designed to encode diversified
spatial correlations among lanes and capture the integrated

spatial dependencies of traffic flows; (ii) the Temporal De-
pendency Module (the upper part) leverages the modified Bi-
directional Long Short Term Memory network (Bi-LSTM)
to model the temporal dependencies of traffic flows and
handle the temporally continuous data missing issue; (iii) the
Spatio-temporal knowledge integration module (the lower right
part) is devised to comprehensively integrate multi-resolution
spatiotemporal knowledge for traffic flow imputation, where
a tailored-designed autoencoder is applied to simultaneously
capture the distribution of traffic data from a global spatio-
temporal perspective.

B. Spatial Dependency Module

In this part, we will introduce how to encode diversified
correlations among lanes from the perspective of constructing
multi-relation graphs, and then we propose a multi-graph
convolution neural network to model the integrated spatial
dependencies of lane-level traffic flows.

1) Spatial graph construction: To encode the diversified
correlations among lanes, we construct three types of graph
from different views. The first one is traffic connectivity
graph Gc, which encodes the physical traffic mobility between
different lanes. The second one is neighborhood graph Gn,
which encodes the geographical proximity between lanes. And
the last one is similarity graph Gs, which encodes the traffic
pattern’s similarity of lanes. These graphs are represented re-
spectively by adjacency matrices as Ac,An,As ∈ (0, 1)N×N ,
where N is the total number of lanes.

a) Traffic connectivity graph: Intuitively, the reachable
lanes may have the similar traffic volume. In this regard, in
terms of the reachable relation of lanes at the same crossroad,
it is obvious that the lanes belonging to the same branch
are mutually reachable. Next, we consider the reachable re-
lationship between different crossroads. As mentioned before,
a crossroad contains several branches, and different crossroads
are connected based on the their corresponding branches.
If two crossroad ci and cj are connected, there exists an
out-branch of ci connected to an in-branch of cj , and vice
verse. To extract the reachable relations of in-lanes between
different crossroads, we can take advantage of out/in-branch
connections between different crossroads. In particular, for an
in-lane li belonging to a specific crossroad, it can reach one of
the out-branch at the same crossroad according to its direction.
Furthermore, li can reach to the in-branch connected by the its
reachable out-branch.Thus we can constructed the connection
for li and all lanes of the reachable in-branch. Finally, the
traffic connectivity graph is defined as follows:

Ac
ij =

{
1, li can reach lj

0, otherwise
(1)

b) Neighborhood graph: Generally, lanes that are rel-
atively close may exhibit similar traffic volume patterns,
e.g., lanes belonging to crossroads within the same region
may have similar fluctuating trends over time. To this end,
we propose the neighborhood graph to capture the distance



correlation between lanes. Specifically, for any lanes li and lj ,
we calculate the distance between them as dist(·) with their
coordinates, and we set a threshold ϵ for the distance to decide
whether connect the lanes together:

An
ij =

{
1, dist(li, lj) ≤ ϵ

0, otherwise
(2)

c) Similarity graph: When imputing the missing value
for the traffic flow of a lane, it is intuitive to take advantage
of the other similar lanes for imputation. Thus we derive a
similarity graph to facilitate the spatial dependency learning.
The edge is defined according to the similarity of lane’s traffic
pattern (i.e., the observed traffic flow volume). Specifically,

As
ij =

{
1, li is top-k similar to lj

0, otherwise
(3)

where k is the prior hyperparameter to control number of
edges, the similarity is calculated by the cosine function.

2) Multi-graph convolution neural network: Based on the
constructed multi-relation graphs, we model the integrated
spatial dependencies of lane-level traffic flows. Due to graph
neural network (GNN) has achieved great success on gen-
eral graph learning problems, we extend GNN to model
the spatial information. Specifically, we first introduce the
diffusion convolution layer to propagate the observed traffic
information to different-order neighbors on a single graph, and
then an attentive multi-graph fusion layer is further devised
to comprehensively integrate traffic knowledge of lanes from
multiple graph perspectives.

a) Diffusion Convolution Layer: Denote the observed
traffic flow of all lanes at time slice t as a graph signal
xt ∈ RN . The core of GNN is to represent node with
neighborhood information. However, the absence of node
features is common in the imputation scenarios. Conducting
the convolution operation on immediate neighbor may limit the
aggregation of effective information. To this end, we propose
to construct multiple high-order graphs to generate more
neighbors at different levels for a target node. By aggregating
information from these more neighbors can prevent the invalid
aggregation to some extent. Specifically, let A denote the
original adjacency matrix, then A(k) is the k-th power of
matrix A, in which the edges indicate the k-order relationships
between nodes. Without loss of generality, we construct K ma-
trices, i.e., {A(1),A(2), ...,A(K)}, to capture different-order
neighbors for each node. Then, we aggregate neighboring
information to generate node representation. Formally, the
diffusion convolution layer is defined as:

x̄t = σ(

K∑
k=1

A(k)WA(k)xt), (4)

where WA(k) ∈ RN×N is a learnable weighted matrix towards
k-th order adjacency matrix, and σ is the activation function.

b) Multi-graph Fusion Layer: By conducting the diffu-
sion convolution operation on three graphs at time slice t,
we can obtain the corresponding node embedding, namely x̄ct ,
x̄nt , x̄st respectively, which contains traffic information from
different views. Next, we fuse all these embeddings learned
from three graphs to generate the overall representation for
each node. Obviously, three graphs capture different types of
spatial knowledge, which play different roles in the traffic
flow imputation task. To this end, we leverage the attention
mechanism to automatically capture the spatial dependencies
for the downstream application. At first, we concatenate the
representations from these three graphs as follows:

x̄cnst = [x̄ct , x̄n
t , x̄st ]. (5)

Afterwards, we add an attention layer by acquiring the atten-
tion weights towards the representations of three graphs:

αt = x̄cns
t ·Wα, (6)

where αt is the attention weights at time splice t, Wα ∈
RN×1 are learnable parameter. Accordingly, we calculate the
weighted sum to get the final spatial representations:

st = αtx̄cnst = αt,1x̄c
t + αt,2x̄nt + αt,3x̄st (7)

In each time slice t, we can obtain the overall spatial
representation st ∈ RN , which preserves the integrated spatial
dependencies and serves for temporal imputation.

C. Temporal Dependency Module
In addition to the spatial dependency among different lanes,

traffic flow volume also has temporal dependency for each
single lane in a time period. In this part, we will introduce the
temporal dependency module.

As we all know, recurrent neural networks (RNN) have been
widely used in the temporal-related tasks. We thus choose a
special RNN model to capture the temporal dependency of the
traffic flow sequence, namely Bi-directional Long Short Term
Memory network (Bi-LSTM). Specifically, Bi-LSTM contains
two LSTM modules that are able to capture both of the
past and future information simultaneously when estimating
the current state. Formally, the standard LSTM model is
formulated as follows:
it = σ (W1 [xt,ht−1] + b1) , ft = σ (W2 [xt,ht−1] + b2) ,

C̃t = σ1 (W3 [xt,ht−1] + b3) ,Ct = ft ⊙Ct−1 + it ⊙ C̃t,

ot = σ (W4 [xt,ht−1] + b4) ,ht = ot ⊙ σ1 (Ct) ,

(8)

where xt is the input vector at time slice t, and W∗,b∗ are
the parameters as weight matrices and bias, ⊙ is element-wise
multiplication, σ and σ1 denote sigmoid and tanh activation
function. ht represents the hidden state. For simplicity, the
above formulas can be represented in short as:

ht = LSTM(xt,ht−1) . (9)

And Bi-LSTM uses the input sequential data and its reverse
to learn the hidden states ht, which can be expressed as:
−→
ht = LSTM

(
xt,
−−→
ht−1

)
,
←−
ht = LSTM

(
xt,
←−−
ht+1

)
,

ht =
[−→
ht,
←−
ht

]
.

(10)



By this way,
−→
ht can capture the temporal trend from historical

data, and
←−
ht can learn the temporal characteristics from future

data. As a result, ht can leverage both the past and future
temporal information.

In this work, we modify the Bi-LSTM for traffic data
imputation task. Considering that the forward and backward
LSTM modules have exactly the same mechanism, we take
the modification of the forward LSTM as an example. Firstly,
as for the traffic flow imputation task, the input is the par-
tially observed traffic flows in a time period T denoted by
X = (x1,x2, ...,xT ), and each of xt denotes traffic flow
volume at time slice t. If there exists missing value in the
vector xt at time slice t, we utilize the corresponding value
in the estimated vector x̂t dependent on hidden state at time
slice t − 1 to replace the missing value at time slice t. This
process can be represented by:

x̂t = Wxht−1 + bx (11)

xC
t = mt ⊙ xt + (1−mt)⊙ x̂t (12)

where equation (11) is a simple linear component that yields
the estimated x̂t based on the previous hidden state ht−1;
equation (12) is used to integrate the estimated values with
the ground truth values where the parameter mt is the missing
position vector for xt.

Secondly, as mentioned before, continuous data missing
issue is common existed in traffic data. Intuitively, different
time intervals with continuous missing values before the
current time slice may bring different influence on estimation
of current time slice. Therefore, we follow [19] to adopt
the temporal decay parameter γt to control the information
transferred from the previous time slice. Then the LSTM
updating equation can be rewritten as follows:

ht = LSTM
(
xC
t ,ht−1 ⊙ γt

)
, (13)

where γt is able to decrease the influence from the missing
values of long previous steps, which is calculated by:

γt = exp {−max (0,Wγδt + bγ)} , (14)

where δt indicates the length of time slices with continuous
missing value before the current step.

Similarly, the backward LSTM has similar operations. Fi-
nally, we can combine the forward and backward estimations
together to predict current traffic flow in an intuitive way as:

x̂∗
t =

−→
x̂t +

←−
x̂t

2
, (15)

where
−→
x̂t and

←−
x̂t represent the forward estimation and back-

ward estimation respectively; x̂∗
t is the combined final output.

D. Spatio-temporal Knowledge Integration

Barely considering either the spatial information or temporal
information is not enough for traffic flow imputation task, we
try to aggregate them together in this block.

First, we incorporate the learned representation from both
spatial and temporal domain at each time slice to derive the

micro knowledge representation. Specifically, as we obtain the
completed temporal estimated vector xC

t in the temporal based
model, we input it into the spatial based estimation equation
(5) and output a new spatial estimated vector ŝt. Then we
further combine the temporal based estimation xC

t with the
spatial based estimation ŝt. We denote the combined vector as
ĉt, and the aggregation process is defined as:

ĉt = βt ⊙ ŝt + (1− βt)⊙ xC
t . (16)

cCt = mt ⊙ xt + (1−mt)⊙ ĉt. (17)

Here we let βt denote the weight of combining the temporal-
based estimation x̂∗

t and spatial-based estimation ŝt, which is
learnable. Finally, we replace the the missing values with the
corresponding values in ĉt, and the obtained vector is the final
completed estimation which is then fed back into the temporal
dependency module to compute the memory of ht. We rewrite
the hidden state updating process in LSTM as:

ht = LSTM
(
cCt ,ht−1 ⊙ γt

)
. (18)

Further, we propose a tailored-designed autoencoder mod-
ule to simultaneously capture the distribution of traffic data
from global spatial and temporal perspectives. The global
spatiotemporal embedding is used to capture the global latent
space distribution of the traffic flow volume over all in-lanes
in a fixed time period as the input traffic flow sequence, which
can cooperate with the micro-view embeddings from a global
view.

Specifically, we first construct multiple hidden layers as
an encoder to generate a hidden state vector of the inputs.
The encoding process can be interpreted as a non-linear
transformation by the following form:

ze1 = σ(We,1X+ be,1), (19)

ze = σ(We,2z
e
1 + be,2), (20)

where X ∈ RN×T is the input matrix of traffic flow volume
over N lanes in a range of T time slices; the We,1,We,2

and be,1,be,2 respectively denote the weight matrices and
bias parameters; σ is the activation function; ze is the learned
hidden states by the encoder.

To learn the global spatiotemporal embedding, we utilize a
decoder composed by hidden layers to reconstruct the matrix
X ∈ RN×T from the latent hidden state. The decoding process
can be represented as follows:

zd1 = σ(Wd,1z
e + bd,1), (21)

zd = σ(Wd,2z
d
1 + bd,2), (22)

where the Wd,1,Wd,2 and bd,1,bd,2 respectively denote the
learnable weight matrices and bias parameters for the decoder;
zd is the output of the decoder.

The learning process of global spatiotemporal embedding
can be formulated as minimizing the L1 error between the
input matrix X and the output matrix zd. After obtaining
the global spatiotemporal embedding ze ∈ Rdk×T from the



autoencoder, we transform it into a new vector as he ∈ Rdk

by a function g to get the final embedding:

he = g(ze), (23)

where in our real-world application we use a mean function to
achieve better performances. Finally, with the learned global
temporal distribution embeddings, we propose to feed the
hidden embeddings into Bi-LSTM model for initialization, to
help the overall model training. We initialize the initial hidden
state h0 of backward and forward LSTM in the Equation (11).
As a result, this global embedding is able to improve the
convergence efficiency and estimation performance.

E. Model Training

In this part, we will introduce the training process for our
model step by step. Firstly, we pre-train our global temporal
embedding module to learn the global temporal distribution
by minimizing the error between input X and reconstructed
value Xr = zd denoted by:

Lr =
∥(X−Xr)⊙M∥1

∥M∥1
. (24)

And then, in the spatio-temporal dependency model, we
first introduce the learning process of unidirectional LSTM
model, in order to converge efficiently we combine three
types of loss respectively corresponding to between input with
each of temporal estimation, spatial estimation and completed
estimation. The total loss at time step t is denoted by:

Lt = L1 (xt, x̂t) + L1 (xt, ŝt) + L1 (xt, ĉt) , (25)

where L1 is the standard L1 loss if given xt,yt as the input
and mt as the missing value mask, by:

L1(xt,yt) =
∥(xt − yt)⊙mt∥1

∥mt∥1
. (26)

The forward estimation and backward estimation loss are
respectively denoted by Lf

t and Lb
t . Moreover, to enforce the

estimation in each step to be consistent from both directions,
we follow [19] to introduce the a consistency loss at each time
slice t as follows:

Lcons
t = L1

(−→
x̂t,
←−
x̂t

)
(27)

As a final combination of the all losses in the spatio-temporal
knowledge integration module is represented by:

Loverall
t = Lcons

t + Lf
t + Lb

t (28)

The overall optimization objective is to minimize the error of
Loverall
t .

V. EXPERIMENTS

In this section, we will introduce the experimental details
conducted on the real-world dataset for evaluating the perfor-
mance of the proposed model.

TABLE I
STATISTICS OF THE REAL-WORLD DATASET.

Description Value
# of traffic flow records 9,585,216

# of missing values 4,376,090
record period 2021-12-01 ∼ 2022-02-25

# of the time slices 24,768
average traffic flow 9.64

max traffic flow 212

A. Experimental setup

1) Dataset: In our dataset, the traffic flow volume are
recorded every 5 minutes over a period of 86 days (from
December 1, 2021 to February 25, 2022). And the road
network consists of 29 crossroads, 114 branches and 387 in-
lanes. The detailed statistics are summarized in Table I.

To evaluate the performance, we constructed five datasets
by randomly masking the raw observed data with different
ratios from 10% to 50% in increments of 10%. In each dataset,
the masked records were considered as test set. And the rest
records were treated as the training and validation set, in
which the proportion of the validation set was a fixed ratio
of 10%. All of models were trained at the training set, and
their parameters were tuned in the validation set. Finally, all
of models were evaluated at the test set.

2) Baselines: We compared MACRO with some state-of-
art methods. Specifically, the statistical methods contain Mean,
ARIMA [8] and KNN [24]. The tensor-based methods contain
LRDMD [27] and LATC [10]. And the deep learning methods
contain GRIN [16] and BRITS [19]. The details of these
baselines are introduced as follows:

• Mean is a heuristic method, which imputes missing value
with the mean of all observed values.

• ARIMA [8] is a classic time series prediction model.
which estimates the missing value at current time slice
by the linear combination of the historical data after
elementary differencing.

• KNN [24] is a clustering method, which leverages the
mean values of several the most similar neighboring
sensors for imputation.

• LRDMD [27] is a matrix completion-based model, which
uses a state transition matrix to capture the temporal de-
pendency in traffic state data with low rank regularization.

• LATC [10] is a state-of-the-art tensor factorization-based
model for traffic data imputation task, which transforms
the tensor of traffic state into matrices with lower dimen-
sions and estimates missing values by a modified matrix
completion method, which is able to capture global and
local temporal relationships in these matrices.

• GRIN [16] is one of the most advanced deep learning
model for time series imputation task. It learns spatio-
temporal representation of multivariate time series by in-
troducing GNN and RNN models to respectively capture
the spatial and temporal dependencies within data.

• BRITS [19] is a deep learning-based time series im-



TABLE II
THE OVERALL PERFORMANCE OF TRAFFIC FLOW IMPUTATION WITH DIFFERENT PROPORTION OF MASK VALUES.

Methods 10% 20% 30% 40% 50%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MEAN 6.8411 9.3579 6.8449 9.3476 6.8615 9.4089 6.8878 9.4984 6.9247 9.6042
ARIMA 3.5034 5.6990 4.0275 6.5648 4.6670 7.5742 5.3763 8.6227 6.1505 9.6928
KNN 6.1422 9.5876 6.2199 9.7199 6.4032 10.0172 6.5120 10.1600 6.7523 10.6075
LRDMD 2.4620 3.7339 2.5754 3.9722 2.7215 4.0785 2.7382 4.20267 2.9035 4.4300
LATC 2.3458 3.5702 2.3722 3.6080 2.4101 3.6777 2.4406 3.7313 2.4782 3.7911
BRITS 2.0090 3.1667 2.0731 3.2787 2.0935 3.2953 2.1431 3.3699 2.2155 3.5021
GRIN 2.1851 3.4363 2.1994 3.4513 2.2254 3.5012 2.2654 3.5749 2.2622 3.5779
MACRO 1.9169 2.9861 1.9790 3.1213 2.0227 3.1788 2.0768 3.2735 2.1284 3.3557
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Fig. 5. The performance of MARCO and its variants under different mask ratio.

putation model, it uses a bi-directional RNN to impute
missing values in multivariate time series by regarding
missing values as variables of the RNN graph.

3) Implementation details: All models were implemented
with Tesla V100 16GB GPU. In terms of the hyperparameter
settings for MACRO, we respectively set the input time steps
T as 24 and the size of output hidden state in autoencoder
module as 512. And we choose the distance threshold ϵ =
1.5km and the order of adjacency matrix K = 2. For a
fair comparison, all baselines parameters were carefully tuned
based on recommended settings.

4) Evaluation metrics: To evaluate the performance of
all models, we utilize the widely used Mean Absolute Er-
ror (MAE) and Rooted Mean Square Error (RMSE) as the
evaluation metrics, which are widely used for time series
imputation problem [19]. And the smaller values of these
metrics means better performance.

B. Overall Performance

The overall results of different models are summarized
in Table II. Obviously, MACRO outperforms all baselines
in MAE and RMSE metrics on five datasets. Particularly,
MACRO improves the performance by approximately average
5% and 10% respectively to the state-of-the-art approaches of
BRITS and GRIN under different mask ratios. Looking further
into the results, we can have the following observations. First,
the statistical models, i.e., MEAN, ARIMA and KNN, always
get the worst performance. Because they impute missing value
by exploiting only simple and explicit proximity, which can-
not handle the complicated dependencies within traffic data.
Second, comparing to the tensor-based models, i.e., LRDMD
and LATC, the deep learning based models, i.e., GRIN and
BRITS, can achieve better performance. This is due to tensor-
based models rely on the low-rank assumption, which may not
be perfectly suitable for the traffic data. In addition, the deep

learning based models have stronger representational capabili-
ties and can capture non-linear dependencies in the data. Third,
although GRIN and BRITS are the most comparable baselines,
our MACRO still gets better performance. Indeed, they are
designed for the general time series imputation, while MACRO
is tailored-designed for our LGTFI problem, which can si-
multaneously model the diversified spatial correlations and
handle the temporally continuous data missing issue within
lane-level traffic flows. Finally, comparing different datasets,
the performance of MACRO shows a gradually decreasing
trend as the mask ratio increases. Nevertheless, it still achieves
the best performance, which demonstrates the robustness of
MACRO with respect to data sparsity.

C. Ablation Study

To further investigate the effectiveness of each component
of MACRO, we conducted experiments to compare the per-
formance of MACRO with its three variants:

• MACRO-GE: It replaces the initial hidden states in
temporal dependency module with all-zero vectors.

• MACRO-MG: It drops the spatial dependency module
in spatio-temporal knowledge integration of MACRO.

• MACRO-GEMG: It only reserves a temporal depen-
dency module of MACRO.

The experimental setting is the same as the overall experiment.
As shown in Fig. 5, MARCO-MG and MACRO-GEMG
perform significantly lower than MACRO and MACRO-GE,
which clearly demonstrates that capturing the complicated
spatial dependency of lanes plays an important role for LGTFI
task. By comparing MACRO with MRCRO-GE, we find that
the absence of global spatio-temporal information slightly
impairs the imputation accuracy. Finally, from the comparison
between MACRO and MACRO-GEMG, the great improve-
ment substantiates the great significance of spatio-temporal
knowledge integration for traffic flow imputation.
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Fig. 6. Parameter sensitive test on hidden state size
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Fig. 7. Parameter sensitive test on k-order graph and time steps T

D. Parameter Sensitivity

In order to test the impact of different hidden state size of
global embedding module, K-order nodes in graph convolu-
tion, and input time steps, we conducted three experiments
by respectively varying these parameters and setting other
parameters as default. First, we vary the hidden state size of
global embedding module from 64 to 1024. The results are
summarized in Fig. 6. In general, with increasing hidden state
size, the performance of MACRO is also improving, since
higher dimension of hidden state is able to better represent the
spatio-temporal nonlinear correlations of traffic flow. However,
in the matter of computation efficiency, higher dimension
also leads to a higher computation cost. To trade off the
performance and computation cost, we set our hidden state
size with a balanced value of 512.

Then, to test the impact of different order neighboring nodes
in graph convolution on model performance, we vary the order
values K from 1 to 4, the results are summarized in Fig. 7. It is
observed that the imputation error presents a decreasing trend,
which could be reasonable since more spatial information is
conducive to improving performance. However, improvement
is not significant when K is bigger than 2, which is possible
because K = 2 has been able to aggregate adequate spatial
knowledge for imputation.

Finally, to test the impact of the input time step T , we
vary its value from 12 to 60, the result is also reported in
Fig. 7. Obviously, MACRO performance fluctuates in a range
and it achieves least errors when T = 24. It was reasonable
that an extremely short input cannot provide enough temporal
information to model, whereas long input introduced noise
temporal information into the model.
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Fig. 8. Case study on weekday.
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Fig. 9. Case study on weekend.

E. Case Study

We further examined the effectiveness of MACRO with
two specific experimental cases derived from real traffic flow
of a randomly selected lane li separately in weekday and
weekend. We take the weekday traffic flow as an example.
Fig. 8(a) presents the observed traffic flow of li in a weekday.
In the training process, some values of the observed traffic
flow volume were randomly masked to train model. The data
distribution of li used for training is shown in Fig. 8(b), and
the gaps between Fig. 8(a) and Fig. 8(b) represent the masked
observation of li. After the imputation process, we filled the
gaps with estimated traffic flow volume by MACRO, and
compared the imputed traffic flow distribution with observed
distribution, the result is shown in Fig. 8(c). As can be
seen, the imputed traffic flow distribution is similar to the
original observed distribution, which clearly demonstrates the
effectiveness of MACRO. On the other hand, the imputation
result on weekend traffic flow is reported in Fig. 9(c), and
it is observed that the distribution of observed traffic flow
volume and imputed distribution are significantly similar at
most time slices. It further demonstrates that MACRO can
capture diversified patterns of traffic flow.

VI. CONCLUSION

In this paper, we investigated a new lane-level traffic flow
imputation problem, and proposed a Multi-grAph Convolu-
tional Recurrent netwOrk (MACRO) framework to solve it.



To capture the diversified spatial correlations within lane-level
traffic flows, we designed a spatial dependency module, where
the multi-relation graphs were constructed to consider different
kinds of correlations from various perspective, and a multi-
graph convolution neural network was proposed to model
the integrated spatial dependencies between lanes. Then, we
adopted a modified bi-directional recurrent neural network to
model the temporal dependency of each lane, and employed a
temporal decay mechanism to control the irregular information
transfer between adjacent time slices for handling the tempo-
rally continuous data missing issue. After that, we devised a
spatio-temporal knowledge integration module to comprehen-
sively integrate multi-resolution spatiotemporal knowledge for
traffic flow imputation. Finally, extensive experiments on the
real-world dataset demonstrated the imputation performance
of MACRO comparing with several state-of-the-art baselines.
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