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ABSTRACT
Recent years have witnessed the rapid development of the Coop-
erative Vehicle Infrastructure System (CVIS), where road infras-
tructures such as traffic lights (TL) and autonomous vehicles (AVs)
can share information among each other and work collaboratively
to provide safer and more comfortable transportation experience
to human beings. While many efforts have been made to develop
efficient and sustainable CVIS solutions, existing approaches on
urban intersections heavily rely on domain knowledge and physi-
cal assumptions, preventing them from being practically applied.
To this end, this paper proposes NavTL, a learning-based frame-
work to jointly control traffic signal plans and autonomous vehicle
rerouting in mixed traffic scenarios where human-driven vehicles
and AVs co-exist. The objective is to improve travel efficiency and
reduce total travel time by minimizing congestion at the intersec-
tions while guiding AVs to avoid the temporally congested roads.
Specifically, we design a graph-enhanced multi-agent decentralized
bi-directional hierarchical reinforcement learning framework by
regarding TLs as manager agents and AVs as worker agents. At
lower temporal resolution timesteps, each manager sets a goal for
the workers within its controlled region. Simultaneously, managers
learn to take the signal actions based on the observation from the
environment as well as an intention information extracted from
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its workers. At higher temporal resolution timesteps, each worker
makes rerouting decisions along its way to the destination based
on its observation from the environment, an intention-enhanced
manager state representation, and a goal from its present manager.
Finally, extensive experiments on one synthetic and two real-world
network-level datasets demonstrate the effectiveness of our pro-
posed framework in terms of improving travel efficiency.
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1 INTRODUCTION
Recent advances in autonomous driving and Vehicle-to-Everything
(V2X) communication technologies enable a new paradigm for
promoting efficient and intelligent transportation solutions by con-
trolling AVs and road infrastructures in a collaborative way. In
recent years, researchers in the transportation field started to de-
sign algorithms to jointly optimize traffic signal plans and vehicle
trajectories. For example, prior studies [14, 15, 38] proposed ap-
proaches such as mixed integer linear programming to optimize
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Figure 1: Mixed traffic at urban intersections.

both the signal timing scheme and the accelerations of AVs. How-
ever, such optimization-based methods depend hugely on expert
knowledge and theoretical physics principles, potentially leading
to bad results when implemented in the dynamically changing
real-world scenarios [5, 9].

In addition to the aforementioned optimization-based methods,
machine learning-based approaches have been shown to be effective
in solving individual tasks in the traffic system. For example, deep
reinforcement learning (DRL) has been widely used in traffic signal
control [1, 18, 31], outperforming traditional heuristic methods in
terms of congestion minimization by a large margin. Moreover, in
the field of vehicle trajectory control, RL-based models have also
achieved significant success, such as dynamic navigation [13, 27]
and control of driving behaviors [25, 32, 34] in fully autonomous or
mixed traffic circumstances. Nevertheless, to the best of our knowl-
edge, none of these existing studies in machine learning-based
mixed traffic control has studied the joint control of autonomous
vehicle navigation and traffic signals. It is a non-trivial task, which
faces the following two major challenges: (1) Traffic signal control
and AV control are highly interdependent. That is, the real-time
changes of traffic signals impact the motions of approaching vehi-
cles, while the dynamic changes of autonomous vehicles are key
factors affecting the decision-making of traffic signals [15, 38]. As
a result, the coupled nature leads to a highly dynamic and chaotic
traffic system. (2) Moreover, the objectives of the two sub-tasks are
independent and inconsistent: traffic signal control works towards
reducing congestion, while AV navigation aims at avoiding con-
gestion. It is challenging to balance these two objectives under a
unified framework to improve overall travel efficiency.

To this end, in this paper, we propose a multi-agent hierarchical
RL framework to deal with the above challenges and collaboratively
control the traffic signal plans and autonomous vehicle rerouting in
hybrid urban traffic as depicted in Figure 1. The goal is to improve
overall traffic efficiency by reducing congestion and minimizing the
travel time of vehicles. Inspired by the feudal framework [19, 24], a
classical hierarchical reinforcement learning architecture, we model
our system in a two-level hierarchy, with a bi-directional propaga-
tion mechanism. Particularly, we regard the traffic signals as man-
ager agents and AVs as worker agents. Both managers and workers
interact with the same environment and information can be shared
between each manager-worker pair through bi-directional message
passing. In this way, collaborations between AVs and traffic signals
can be effectively promoted. Specifically, at each time step, we build
a timely signal-vehicle ego-network for each signal control zone in

which traffic signals and AVs are interconnected. Then a dynamic
heterogeneous graph neural network is adopted to aggregate the
regional navigation intention for managers. Afterwards, managers
combine their observations from the environment and the extracted
intention to generate a comprehensive state representation, which
is further propagated to workers to enhance their states. With the
coordinated states, we leverage deep Q-networks to learn state-
action values for both managers and workers. Notably, in the traffic
signal control task, we construct a signal-signal graph based on
the road network and leverage a graph convolutional network to
enhance the cooperation among signals. Finally, to balance the in-
consistent objectives of two sub-tasks, we leverage a goal network
to compute the manager state based desired goal vectors, which
are used to guide the actions of workers. We reward each worker
for taking the navigation action that yields a state transition close
to matching the goal.

The major contributions of this paper are summarized as follows:
• We propose a novel multi-agent hierarchical RL framework,
NavTL, to dynamically control the traffic signals and rerout-
ing directions of the AVs simultaneously.
• We provide an improved version of the uni-directional feu-
dal RL framework, which involves both top-down guidance
from managers and bottom-up intention from workers. Ad-
ditionally, we incorporate graph neural networks to enable
vehicle-signal cooperation and signal-signal coordination.
• We conduct extensive experiments on one synthetic and two
real-world datasets to demonstrate the superior performance
of NavTL in terms of minimizing congestion and improving
travel efficiency.
• To the best of our knowledge, NavTL is the first work that: (i)
solves the task of coordinated control of traffic signals and
autonomous vehicles in the mixed traffic environment, (ii)
applies graph-enhanced hierarchical reinforcement learning
on the task of dynamic vehicle navigation in urban intersec-
tions and tests the model with real-world road traffic data,
(iii) employs hierarchical reinforcement learning involving
heterogeneous agents that focus on two distinct tasks.

2 RELATEDWORKS
The relevant literature can be classified into three categories, namely
traffic signal control, dynamic vehicle navigation, and hierarchical
reinforcement learning.

2.1 Traffic Signal Control
The target of intelligent traffic signal control (TSC) is to study the
change of phase plans of traffic signals to reduce congestion. Tradi-
tional methods of traffic signal control include MaxPressure [23],
Webster [28], SOTL [4], etc. These methods mainly control traf-
fic signals in a heuristic manner. For example, MaxPressure [23]
greedily selects the next phase corresponding to the maximum
pressure, which is defined as the total difference between number
of waiting vehicles in the upstream incoming lanes and that in
the downstream [29]. However, traditional methods rely on strong
assumptions which limit their performance. Accordingly, several
studies formulate this control task as an RL problem, where each
traffic signal is regarded as an agent. Generally, the state refers
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Figure 2: A four-phase cycle in a demo intersection.

to the information regarding the traffic situation at intersections,
such as length of waiting vehicles in the incoming directions, vehi-
cles’ average waiting time, total number of approaching vehicles
on incoming roads, and average travel speed of approaching ve-
hicles [1, 7, 18]. The agent’s action is either the next phase in the
upcoming time step, assuming the phase order is not predefined, or
the time to switch to the upcoming phase, assuming the order is pre-
determined [26, 29, 30]. Although these RL-based models have been
shown to be effective in the TSC task, they have merely studied the
simple homogeneous setup where only human-driven vehicle(HVs)
exist in the network. None of them has considered the TSC task in
mixed scenarios where both HVs and AVs co-exist.

2.2 Dynamic Vehicle Navigation
Vehicle route planning aims at finding a path for the vehicle to
its destination with minimum cost. Classical pathfinding solutions
such as Dijkstra’s algorithm [6] and A* [10] compute the shortest
path between a departure node and a destination node greedily.
Though widely adopted in real-world applications, these static
path-finding algorithms do not consider the changing dynamics
of the roads in real-time. Recently, a few works have proposed
learning-based real-time vehicle navigation models by formulating
the navigation task as a sequence of rerouting decisions [8, 13, 27].
They define the task as an RL problem in which the vehicle learns
to make a turn at the upcoming intersection, e.g. left-turn, right-
turn, or go-straight at a four-way crossing, given its observation
including its current location and destination information, as well
as real-time road traffic information. However, these works make
hypothetical assumptions regarding autonomous vehicles, i.e. AVs
can directly obtain the traffic data of all the roads as their observa-
tion, which is unrealistic in real-world implementations. Moreover,
they neglect the controllability of traffic signals in the system setup,
which is a key component of urban traffic scenarios.

2.3 Hierarchical Reinforcement Learning
Hierarchical Reinforcement Learning (HRL), a special RL architec-
ture, decomposes a complex RL problem into sub-tasks and trains
the hierarchical policy in an end-to-end manner [2, 11, 20]. Existing
methods in HRL can be categorized into two classes, including the
options framework and the feudal hierarchy. The options frame-
work introduces a set of sub-tasks, namely options, to the main task.
An option is defined as a policy, a termination condition, and an ini-
tiation set. During the learning process, if the current state belongs
to the initiation set of an option, the option will be activated until
termination [22]. Differently, feudal reinforcement learning [24] in-
troduces a two-level architecture in which the higher-level manager
is trained to learn a goal to guide the trajectories of the lower-level
worker, while the worker is trained to learn to satisfy the goal.

Departure

Destination

Coordination
Zone

Figure 3: Illustrative demonstration of the navigation task.

A few works have applied the HRL framework in complex trans-
portation scenarios, such as traffic signal management systems
and ride-hailing platforms [12, 16, 17]. For example, [16] solves the
traffic signal control task by defining regions as managers and inter-
sections as workers, and setting the states of the region managers
as abstractions of workers’ states within the region. However, the
managers and workers in this problem formulation are homoge-
neous. In other words, both manager and worker focus on the same
task and have the same state and action space. To the best of our
knowledge, no studies have focused on the application of feudal RL
in heterogeneous tasks, where managers and workers both interact
with the same environment but acquire different states, and learn
to take distinct actions simultaneously and collaboratively.

3 PROBLEM FORMULATION
Our task is to improve travel efficiency at the system level through
joint control of autonomous vehicles and traffic signals, aiming to
minimize congestion at intersections while guiding AVs to avoid
congested roads by providing intelligent rerouting choices. In other
words, our CVIS contains two sub-tasks, namely traffic signal con-
trol and dynamic autonomous vehicle navigation, respectively.

For traffic signal control, we study the change of the phase plan
of traffic lights. A phase cycle is defined as a set of ordered green
phases, each followed by a default yellow phase. As shown in Fig-
ure 2, a green phase defines the permitted traffic flow(s) of one or
more non-conflicting directions. Here, the duration of each phase
𝑇𝐺 is fixed, and our task is to control their order.

For dynamic autonomous vehicle navigation in mixed traffic
scenario, we assume all AVs are under control, while HVs are not.
Given the vehicle’s departure location and destination location, the
real-time navigation task can be regarded as a series of decisions
made at each intersection along its way to the destination. Once
the vehicle enters the coordination zone of an intersection, as illus-
trated in Figure 3, it decides the way to turn at the current crossing.
Immediately, a new route is formulated between the road it decided
to turn to and the destination road with the least travel cost.

4 METHODOLOGY
In this section, we present the technical details of our NavTL frame-
work. We begin by explaining the multi-agent RL setup and the
deep Q-learning algorithm. We then introduce the key components
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Figure 4: An overview of the NavTL framework.

that facilitate signal-vehicle cooperation in our framework, includ-
ing the regional navigation intention extraction module, intention-
enhanced message passing, and hierarchical navigation guidance.
Finally, we discuss inter-signal communications for signal control.

4.1 Multi-Agent RL Setup
Assuming each traffic signal and autonomous vehicle is controlled
by an individual agent, we treat the CVIS joint control task as a
Partially-Observable Markov Decision Process(POMDP) problem,
where each agent observes part of the total system condition. Specif-
ically, the problem is characterized by the following components
⟨𝑆𝑙 , 𝑂𝑙 , 𝐴𝑙 , 𝑟𝑙 , 𝜋𝑙 , 𝑃𝑙 , 𝛾𝑙 , 𝑆𝑣 , 𝑂𝑣 , 𝐴𝑣 , 𝑟𝑣 , 𝜋𝑣 , 𝑃𝑣 , 𝛾𝑣⟩:
• Traffic Signal State. 𝑆𝑙 represents the global state space
for all traffic signal agents. Each agent partially observes
𝑜 ∈ 𝑂𝑙 , which includes its current phase encoding (a one-hot
vector indicating the current green phase index in the phase
cycle), pressure, total number of vehicles and average travel
speed in 12 total incoming-outgoing flow directions (N-S,
N-W, N-E, S-N, S-W, S-E,W-N,W-S,W-E, E-N, E-W, E-S). Here
we define a possible traffic flow e.g. N-W, as the flow from
the incoming direction North to the outgoing direction West
at the corresponding intersection.
• Traffic Light Action. 𝐴𝑙 denotes the action space for traffic
signal agents, which is a possible green phase index to be
selected during the next 𝑡 = 𝑇𝐺 period.
• Traffic Light Reward. we select the negative of total queue
length for the reward function 𝑟𝑙 , which is defined as the
total number of waiting vehicles on all incoming roads at
the intersection, following [30].
• Autonomous Vehicle State. 𝑆𝑣 stands for the global state
space for all vehicle agents, each of which observes 𝑜 ∈ 𝑂𝑣 .
Here, 𝑂𝑣 = [𝑉 ,𝑋𝑐𝑢𝑟 , 𝐷𝑐𝑢𝑟 , 𝑋𝑑𝑒𝑠𝑡 , 𝐷𝑑𝑒𝑠𝑡 ], in which 𝑉 is the
vehicle’s speed; 𝑋𝑐𝑢𝑟 is a one-hot encoding of length 𝑁𝑀

(total number of traffic signals), representing the index of the
vehicle’s upcoming intersection; 𝐷𝑐𝑢𝑟 is a one-hot direction
encoding of length 4 which stands for its current approach-
ing direction to the upcoming intersection i.e., N/S/E/W;
similarly, 𝑋𝑑𝑒𝑠𝑡 and 𝐷𝑑𝑒𝑠𝑡 are encodings that represent the
destination intersection and the direction of the destination
lane to that intersection .
• Autonomous Vehicle Action. 𝐴𝑣 is the action space for
the vehicle agents, an action is a possible turning direction

at the upcoming crossing. In a regular intersection without
turnarounds, the number of possible actions is 3, including
turn-left, turn-right, and go-straight.
• Autonomous Vehicle Reward. 𝑟𝑣 is the reward function
for vehicle agents, we select the accumulated travel time
since the last action time as the reward, following [13].
• Policy. 𝜋𝑙 and 𝜋𝑣 are the policy functions for the signal
agents and vehicle agents respectively. The policy𝑂×𝐴→ 𝜋

guides the agents to select the optimal actions given different
state observations.
• State Transition Function. 𝑃𝑙 and 𝑃𝑣 are the state transi-
tion functions for the signal agents and vehicle agents respec-
tively. At each timestep, given the global state 𝑠𝑡 and the joint
actions 𝑎𝑡 produced by the agents, i.e., 𝑎1 × 𝑎2 × ... × 𝑎𝑛 , the
system produces the next state 𝑠𝑡+1 following the transition
probability 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ).
• Discount Factor. 𝛾𝑙 and 𝛾𝑣 are the discount factors in cal-

culating accumulated returns, 𝑅 =
∞∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 , for the signal

and vehicle agents, respectively.

4.2 Deep Q-Learning
We adopt a classical RL algorithm in our framework, namely Deep
Q-Networks (DQN) [21], which is an extension of the traditional Q-
learning algorithm [22]. Q-learning is a value-based and model-free
RL model that learns the state-action value function i.e., 𝑄 (𝑠, 𝑎),
which specifies the value of the action to perform in a given state
according to the optimal policy 𝜋∗ [22]. With the raising power
of deep learning technology, 𝑄 (𝑠, 𝑎) can be approximated by neu-
ral networks, so-called deep Q-learning. In this paper, we employ
two neural networks, namely a current network 𝑄 and a target
network �̃� , such that 𝑄 is directly trained to learn the state-action
values as the agent interacts with the environment, while �̃� is asyn-
chronously updated with the most recent weights of 𝑄 every 𝑇

steps during the learning process. In such way, learning stability
can be improved. The parameter 𝜃 of𝑄 is optimized by minimizing
the Temporal-Difference (TD) error, i.e., the difference between the
TD target and the predicted Q value, where the TD target is the sum
of the immediate reward 𝑟𝑡 and the discounted optimal Q value at
the next state 𝑆𝑡+1 computed using �̃� . The TD loss is defined below:

𝐿𝜃 = 𝐸 [𝑟𝑡 + 𝛾 max
𝑎

�̃� (𝑆𝑡+1, 𝑎 |𝜃 ) −𝑄 (𝑆𝑡 , 𝑎𝑡 |𝜃 )]2, (1)

where 𝑎𝑡 is the action at timestamp 𝑡 , and 𝛾 is the discount factor.

4.3 Signal-Vehicle Cooperation for Navigation
In our problem setup, traffic signals operate at an upper level,
controlling the macroscopic vehicle flows, while AVs operate at
a lower level, controlling their own routing directions. This par-
ticular setup naturally aligns with the structure of the feudal RL
architecture, which constructs a two-level hierarchy in which the
higher-level manager updates at lower temporal resolution e.g. ev-
ery few timesteps, while the worker operates at higher temporal
abstraction i.e., every timestep [19, 24]. In traditional feudal RL, the
manager does not interact directly with the environment, its state
is an abstraction of the worker’s state. And the manager learns a
goal vector 𝐺 as its action, which is not directly executed in the
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environment but fed to the worker instead. The worker then takes
𝐺 , a desirable state that it should reach, into consideration when
calculating its reward. Indeed, the original feudal RL is designed to
solve homogeneous tasks. In other words, this framework works
well when managers and workers focus on a homogeneous task
since in such cases managers’ observations and workers’ observa-
tions only differ in scale. Differently, our managers and workers are
heterogeneous agents focusing on two different tasks, with distinct
observation and action spaces. Therefore, we develop an improved
version of the feudal RL framework for the coordinated control
task by introducing the bi-directional message-passing mechanism,
which enables the integration of the bottom-up intention informa-
tion from workers to managers as well as the top-down guidance
information from managers to workers. In this way, the collab-
oration between managers and workers is much closer. Figure 4
presents the overview of our framework, and wewill further discuss
details of the framework in the following subsections.

4.3.1 Regional Navigation Intention Extraction. The prevailingmeth-
ods for controlling traffic signals primarily rely on the present
conditions at the intersections rather than taking potential future
information into account. In our cooperative system, we can obtain
the driving intention of AVs, such as the current approaching direc-
tion and desired destination, which intuitively provide foresight to
traffic signals for better control. To capture the intention of AVs for
traffic signals, we construct a heterogeneous signal-vehicle graph
at each timestamp, which is defined as G = (V, E), in which the
set of nodes isV = {V𝑀 ,V𝑊 } whereV𝑀 andV𝑊 represent all
traffic light(manager) nodes and AV(worker) nodes respectively,
and E includes edges between each manager-worker pair, as shown
by the dotted lines in Figure 5. Since the coordination zone of
each signal node is independent of each other, it is intuitive to
further decompose G into ego-graphs for each manager 𝑖 , denoted
as G𝑖 = (V𝑖 , E𝑖 ), in whichV𝑖 = {𝑖,V𝑖

𝑊
}, whereV𝑖

𝑊
represents all

AV nodes in the control zone of manager 𝑖 .
Considering graph neural networks (GNNs) have achieved major

success in learning information from topological structures [35, 36],
we perform a message-passing neural network within the ego-
graph of manager 𝑖 to obtain the spatially aggregated states𝑋𝑖 from
connected workers’ states 𝑆 𝑗 as follows:

𝑋𝑖 =
1
|V𝑖 |

∑︁
𝑗∈V𝑖

𝑊𝑖𝑆 𝑗 , (2)

where𝑊𝑖 is the learnable transformation matrix. More importantly,
since the signal-vehicle relationship evolves over time while AVs
traverse through the intersections, we model the dynamic intention
by further combining 𝑋𝑖 obtained at the current timestep 𝑡 with the
historical intention representations learned at the past 𝑘 timesteps
to obtain a temporally aggregated intention as follows:

𝐼𝑡𝑖 = 𝑓 (𝐼𝑡−𝑘𝑖 , 𝐼𝑡−𝑘−1𝑖 , ..., 𝐼𝑡−1𝑖 , 𝑋𝑖 ), (3)

where 𝑓 (·) is flexible, it can be a linear function or other sequential
models, such as RNN [3, 33]. For simplicity, we use the linear func-
tion during implementation. In such way, we are able to obtain the
dynamic intention representation of workers at time 𝑡 , which will
be delivered to managers via the bottom-up message propagation.

t = 1

t = 2

t = 3

Time

Signal 1 Signal 2 Signal 3

Signal 1 Signal 2 Signal 3

Signal 1 Signal 2 Signal 3

Static Signal-Signal Adjacency Dynamic Signal-Vehicle Adjacency

Figure 5: Illustration of the dynamic Signal-Vehicle graph
and the static Signal-Signal graph in the traffic network.

4.3.2 Bi-directional Message Passing. As mentioned before, it is
crucial for workers to notify managers their travel intention. Hence,
after obtaining the intention representation, we propagate it in a
bottom-up manner from workers to managers to enhance collab-
oration. Specifically, we first concatenate the current state 𝑆𝑡

𝑖
of

each manager 𝑖 and the intention 𝐼𝑡
𝑖
, and then feed it to the Man-

ager Encoder which is a Multi-layer Perceptron (MLP), to obtain
an intention-aware manager state representation 𝑆𝑡

𝑖
:

𝑆𝑡𝑖 = 𝑀𝐿𝑃 (𝑆𝑡𝑖 ⊕ 𝐼
𝑡
𝑖 ) . (4)

Intuitively, this enhanced representation can potentially help work-
ers gain insights into the congestion level of roads connected to
the upcoming intersection, helping them to make better-rerouting
decisions. Hence, we propagate it back to workers in a top-down
manner to compute the manager-enhanced worker state 𝑆𝑡

𝑗
:

𝑆𝑡𝑗 = 𝑆𝑡𝑗 ⊕ 𝑆
𝑡
𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑗 ∈ 𝑉 𝑡

𝑖 . (5)

Finally, 𝑆𝑡
𝑗
will be fed into workers’ Q-network 𝑄𝑣 with parameter

𝜃𝑣 containing three MLP layers for learning the worker’s Q-value.
By this bi-directional propagation scheme, we not only bring the

bottom-up intention representation from workers to managers, but
also incorporate the top-down intention-enhanced manager state
to workers. As a result, the challenging problem of jointly modeling
the mutually dependent TSC and AV control tasks can be solved.

4.3.3 Hierarchical Navigation Guidance. Another substantial chal-
lenge we face is that the objectives of our heterogeneous agents do
not align with each other. To deal with this problem, we adopt a
neural network to learn the goal vector 𝐺𝑡

𝑖
based on the intention-

aware manager states:

𝐺𝑡
𝑖 = 𝑀𝐿𝑃 (𝑆𝑡𝑖 ) . (6)

The goal𝐺𝑡
𝑖
indicates the desired next state for the worker from the

manager perspective and is used to guide worker’s action. Specifi-
cally, we first calculate the ideal next state for worker as 𝑆𝑡

𝑗
+𝐺𝑡

𝑖
,

then a constraint is adopted to make the worker’s real next state
𝑆𝑡+1
𝑗

align with the ideal state, defined as follows:

𝑟
𝑖𝑛𝑡,𝑡
𝑗

= 𝑑𝑐𝑜𝑠 (𝑆𝑡𝑗 , 𝑆
𝑡−1
𝑗 +𝐺𝑡−1

𝑖 ), (7)
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where 𝑑𝑐𝑜𝑠 stands for the cosine similarity, and 𝑟 𝑖𝑛𝑡,𝑡
𝑗

is regarded as
an intrinsic reward for guidance.

The final worker reward function is a linear combination of
the extrinsic reward obtained from the environment 𝑟𝑒𝑥𝑡

𝑗
and the

intrinsic reward, as shown in Equation 8, where 𝛼 is a parameter
representing the factor of internal reward contributing to the overall
worker’s reward.

𝑟𝑡𝑗 = 𝛼𝑟
𝑖𝑛𝑡,𝑡
𝑗
+ 𝑟𝑒𝑥𝑡,𝑡

𝑗
. (8)

During training, we adopt the loss function in Equation 1 to opti-
mize the parameter 𝜃𝑊 in the workers’ Q-network, by substituting
the state with 𝑆𝑡

𝑗
which is obtained from Equation 5 and replacing

the reward with 𝑟𝑡
𝑗
from Equation 8.

With the introduction of the goal network and the intrinsic
reward to our framework, we are able to unify the two independent
sub-tasks such that they work towards a shared objective.

4.4 Inter-Signal Communication for Traffic
Signal Control

In terms of the traffic signal control sub-task, since traffic flows
between neighboring intersections are inter-connected, neighbor-
ing intersections’ information is essential in the decision making
of traffic signals. Inspired from past works such as [30] and [26],
we first build a signal-signal graph based on the road network
G𝑀 = (V𝑀 , E𝑀 ), whereV𝑀 represents traffic lights, and E𝑀 rep-
resents the set of edges i.e., the connections between neighbor-
ing intersections in the road network, as illustrated by the solid
lines in Figure 5. Then we leverage Graph Convolutional Network
(GCN) [36] to improve the communications among signals by aggre-
gating information from neighboring signals to obtain the spatially
enhanced representation for each manager agent. Specifically, we
define the signal-signal adjacency matrix as 𝐴𝑀 = {𝑎𝑖𝑘 }𝑖,𝑘∈V𝑀

,
where 𝑎𝑖𝑘 = 𝑎𝑘𝑖 = 1 if signals 𝑖 and 𝑘 are connected, and 𝑎𝑖𝑘 =

𝑎𝑘𝑖 = 0 otherwise. The propagation rule of a GCN layer is defined
as:

𝐻 = 𝜎

(
𝐷−

1
2 �̃�𝐷−

1
2𝑋𝑊

)
+ 𝑋, (9)

where �̃� = 𝐴+𝐼 is the adjacencymatrix with self-loops, and𝐷 stands
for the degree matrix, i.e., 𝐷𝑖𝑖 =

∑
𝑘 �̃�𝑖𝑘 ,𝑊 stands for the weight

matrix of the layer. In our framework, we adopt two connected
GCN layers with activation 𝜎 and a dropout. We also involve a skip
connection operation by adding the input feature 𝑋 to the GCN
propagation output to improve model stability.

With the GCN module, we are able to compute the spatially
aware representations for the traffic signals, then the learnt repre-
sentation 𝐻𝑖 for signal 𝑖 is fed into the MLP with parameter 𝜃𝑀 to
learn the manager’s Q-value. Lastly, we provide the loss function
for optimizing managers’ network in Equation 10 where 𝑆𝑡

𝑀
is the

intention-aware manager state representation in Equation 4.

𝐿 = 𝐸 [𝑟𝑡+𝛾 max
𝑎

�̃�𝑀 (𝑆𝑡+1𝑀 , 𝐴𝑀 , 𝑎 |𝜃𝑀 ,�̃� )−𝑄 (𝑆𝑡𝑀 , 𝐴𝑀 , 𝑎𝑡𝑀 |𝜃𝑀 ,𝑊 )]2 .
(10)

4.5 PseudoCode
The pseudocode of our framework is provided in Algorithm 1.

Algorithm 1: Pseudocode for NavTL
for episode in 1:N do

Initialize parameters and reset the environment.
Define a signal-signal graph G𝑀 with adjacency A𝑀 .
for t in 1:T do

Construct heterogeneous signal-vehicle graph G𝑡 .
Compute intention 𝐼𝑡

𝑀
according to Equation 3.

Obtain enhanced 𝑆𝑡
𝑀

according to Equation 4.
Obtain enhanced 𝑆𝑡

𝑊
based on Equation 5.

Compute the goal vector 𝐺𝑡
𝑀

following Equation 6.
With probability 𝜖 randomly select action 𝑎𝑡

𝑊
for

workers; otherwise 𝑎𝑡
𝑊

=𝑚𝑎𝑥𝑎 (𝑄𝑊 (𝑆𝑡𝑊 , 𝑎;𝜃𝑊 )).
Execute actions 𝑎𝑡

𝑊
and observe 𝑆𝑡+1

𝑊
and 𝑟𝑡

𝑊
.

Store the transition ⟨𝑆𝑡
𝑊
, 𝐼𝑡
𝑀
, 𝑎𝑡

𝑊
, 𝑟𝑡
𝑊
, 𝑆𝑡+1
𝑊
⟩ in 𝐵𝑊 .

if 𝑙𝑒𝑛(𝐵𝑊 ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
Sample a batch ⟨𝑆𝑤 , 𝐼𝑚, 𝑎𝑤 , 𝑟𝑤 , 𝑆

′
𝑤⟩ from 𝐵𝑊 .

Update 𝜃𝑊 based on the TD loss in Equation 1.
end
Let 𝑆𝑡

𝑊
= 𝑆𝑡+1

𝑊
.

if 𝑡 %𝑇𝐺 = 0 then
With probability 𝜖 randomly select action 𝑎𝑡

𝑀
for

managers; otherwise
𝑎𝑡
𝑀

=𝑚𝑎𝑥𝑎 (𝑄𝑀 (𝑆𝑡𝑀 , 𝐼𝑡
𝑀
, 𝐴𝑀 , 𝑎;𝜃𝑀 )).

Execute actions 𝑎𝑡
𝑀

and observe 𝑆𝑡+1
𝑀

and 𝑟𝑡
𝑀
.

Store the transition ⟨𝑆𝑡
𝑀
, 𝐼𝑡
𝑀
, 𝑎𝑡

𝑀
, 𝑟𝑡
𝑀
, 𝑆𝑡+1

𝑀
⟩ in 𝐵𝑀 .

if 𝑙𝑒𝑛(𝐵𝑀 ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
Sample a batch ⟨𝑆𝑀 , 𝐼𝑀 , 𝑎𝑀 , 𝑟𝑀 , 𝑆′

𝑀
⟩ from

𝐵𝑀 .
Update 𝜃𝑀 based on the TD loss in
Equation 10.

end
Let 𝑆𝑡

𝑀
= 𝑆𝑡+1

𝑀
.

end
if 𝑡 %𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 0 then

𝜃𝑊 ← 𝜃𝑊 , 𝜃𝑀 ← 𝜃𝑀
end

end
end

5 EXPERIMENTS
In this section, we introduce the experimental details conducted
on three datasets for validating the proposed NavTL framework.
Specifically, we first explain the experimental setup including the
simulation environment, datasets used, evaluation metrics, com-
pared methods, and model parameter settings, and then we present
and discuss the experimental results.

5.1 Simulation
We utilize SUMO1 (Simulation of Urban MObility), a commonly
adopted microscopic and space-continuous multi-modal traffic sim-
ulator, to simulate traffic dynamics includingmovements of vehicles

1https://www.eclipse.org/sumo/

https://www.eclipse.org/sumo/
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Figure 6: The road networks of three datasets.
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Figure 7: Distribution of vehicle entrance time.

and phase changes of traffic signals. The road networks data and
trip information of human-driven vehicles (HVs) are directly ob-
tained from a road network file and a route file, while the trips of
autonomous vehicles are randomly sampled from valid routes using
the total number of vehicles entered the network during the last
timestep and the penetration rate 𝑃𝑅, which is defined as follows:

𝑃𝑅 =
𝑁𝐴𝑉

𝑁𝐴𝑉 + 𝑁𝐻𝑉
, (11)

where 𝑁𝐴𝑉 and 𝑁𝐻𝑉 denote the number of AVs and HVs.
The microscopic behaviors of all vehicles in our simulation

are automatically modeled by SUMO via its default built-in car-
following model, i.e., the Intelligent Driver Model (IDM), which
adaptively controls the vehicles’ accelerations based on their ve-
locities and distances to their leading vehicles. For AVs, once we
obtain their rerouting actions from the RL model, we immediately
recompute the fastest route between the new road that it shall turn
to and its predetermined destination road. The computation of the
fastest new route is automatically completed through SUMO using
the Dijkstra’s algorithm [6]. The simulator is able to estimate travel
times on different roads based on current traffic conditions. Given
the estimated travel times as edge weights and intersections as
nodes, the Dijkstra’s algorithm finds the shortest path greedily.

5.2 Datasets
We conduct experiments on one synthetic dataset and two real-
world datasets. The open-source synthetic dataset, namely Grid-
4x4 [1, 18], is shown in Figure 6(a), where all roads are 300𝑚 in
length. It contains 16 intersections in total, each controlled by a
traffic signal. We extract 1-hour route data for model training and
evaluation, and a total of 1, 473 vehicles enter the road network
during the period. The real-world data Baoding-19 is obtained from
Baoding, Hebei province of China. As shown in Figure 6(b), the
Baoding-19 dataset contains a total of 19 traffic signals, and the road
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Figure 8: Model performance on Grid-4x4 (a-c), Baoding-19
(d-f), and Hangzhou-4x4 (g-i) data.

lengths range from 168.24𝑚 to 1234.60𝑚. We take 20-min route data
from the route file, there are 615 vehicles entering the road network
in total. Another public real-world data, Hangzhou-4x4 [18], as
demonstrated in Figure 6(c), also contains 16 traffic signals, each
controlling an intersection. All W-E roads have lengths 800𝑚 and
all N-S roads have lengths 600𝑚. We extract 30-min route data from
the route file, during which 1, 660 vehicles enter the network. In
this paper, we set the coordination zones to circles centered at the
traffic signals with a radius of 150𝑚 for all datasets. The entering
vehicle distributions of all datasets are shown in Figure 7. It can be
found that these datasets represent various traffic scenarios, such
as highly congested circumstances (shown by the most congested
interval in Hangzhou-4x4), increasing travel demand (like the first
2000s of Grid-4x4), decreasing travel demand (as the last 1600s of
Grid-4x4), and sparse and irregular demand (Baoding-19).

5.3 Evaluation Metrics
Commonly used evaluation metrics for the traffic signal control
task include vehicles’ average waiting time, average total number
of stops, total throughput, total delay duration, etc [1, 18, 31]. For
the navigation task, evaluation metrics such as average travel time
and average speed of the controlled vehicles are often adopted to
evaluate the model performance [13, 27]. In this paper, we select
five metrics to evaluate performance, including average total delay
(defined as 𝑡𝑟𝑒𝑎𝑙 − 𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 , where 𝑡𝑟𝑒𝑎𝑙 is the actual trip duration
of a vehicle and 𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 is the ideal trip time if the vehicle travels
at its maximum speed in the traffic network without any traffic
restrictions, e.g., red lights at intersections), average waiting time
and average travel time of all vehicles (both HVs and AVs), and
average travel time and average waiting time of AVs only.
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5.4 Compared Methods
We compare the NavTL framework with some representative base-
lines in the traffic signal control task and the dynamic navigation
task, as well as a model on the joint control task, including:
• Colight [30]: a multi-agent DQN model for the traffic signal
control task which involves a multi-head Graph Attention
Network to aggregate neighborhood observations.
• FMA2C [16]: a multi-agent A2C model for the traffic signal
control task which employs the feudal architecture by as-
signing region managers and intersection workers. For all
datasets we manually assign four managers, each controlling
a region containing its nearby intersections.
• DQNNavigation [13]: a multi-agent independent DQNmodel
for dynamic navigation across multiple intersections.
• XRouting [27]: an explainable multi-agent PPOmodel for the
navigation task which adapts attention and a transformer
module to learn the road-vehicle attributes dynamically.
• DQNConcat: a joint control baseline combining DQN-based
traffic signal control and DQN-based vehicle navigation,
where the state space of the TL agents and the AV agents fol-
low the state space definitions in [30] and [13] respectively,
and each AV agent makes its decision based on an enhanced
state which is a concatenation of its own observation and
the observation of the upcoming TL.

5.5 Parameter Settings
In our experiments, we set 𝑇𝐺 = 7 seconds for the green phases,
each followed by a default yellow phase with 3 seconds. In terms of
NavTL, parameters are shared among all managers and all workers
for training efficiency. In the RL setup, we set threshold to 100, and
target update frequency to 10, 𝛾 = 0.95, and 𝑙𝑟 = 0.001. The hidden
layer of all MLPs contain 64 neurons, and the GCN layer has hidden
shape 128. For the temporally enhanced intention extraction, we
set 𝑘 = 1. In terms of internal reward, we set 𝛼 = 1. We adopt the
RMSprop optimizer [37] for both managers and workers, and we use
𝑅𝑒𝐿𝑈 as the activation functions in our model. For all experiments
we train the models for 50 epochs and evaluate over 25 epochs.

5.6 Performance Evaluation
To evaluate the effectiveness of NavTL, we compare its performance
with those of the baselines on three datasets, where the penetration
rate is set to 30%. The overall performance over different evaluation
metrics are shown in Table 1, and the training performances eval-
uated with different metrics are provided in Figure 8. We provide
the training reward curves of managers and workers in Figure 9.

According to the results, we can conclude that our model outper-
forms either the TSC baselines or the dynamic navigation baselines.
On one hand, compared with RL-based TSC methods, NavTL con-
verges faster to the lowest level in terms of total delay, total travel
time, and total waiting time. Our model reduces the total delay
time by 25.98% on the Grid-4x4 data and 26.08% on the Baoding-19
data compared to Colight, and our model achieves 15.75% improve-
ment in terms of the total waiting time on the Hangzhou-4x4 data
compared to FMA2C. On the other hand, comparing with the dy-
namic navigation baselines, our model can reduce AVs’ total waiting
time by 53.41% on the Grid-4x4 data compared with XRouting and

13.97% on the Hangzhou-4x4 data compared with DQNnavigation,
which indicates our model can not only reduce congestion from the
macroscopic perspective, but also guide AVs to avoid the tempo-
rally congested regions and spend the least time in waiting. More
importantly, the effectiveness of the bi-directional framework can
be illustrated by the superior performance of NavTL over DQN-
Concat for nearly all evaluation metrics. For example, our model
outperforms DQNConcat by 14.02% and 16.41% on the Baoding-19
and Hangzhou-4x4 data respectively in terms of total delay duration.
Combined with the learning curves for managers, we can validate
that the design of the intention-aware bi-directional propagation
mechanism and the goal guidance scheme successfully improves
training performance of the intelligent traffic signals, as they are
able to receive routing requests from AVs and make more collab-
orative decisions to guide traffic flows accordingly. Last but not
least, the robustness of our model can be shown by the superior
performance on all three datasets, which have different vehicle
entrance distributions as illustrated in Figure 7. Thus, our model
can handle various traffic scenarios effectively.

5.7 Ablation Study
We further evaluate the effectiveness of individual components of
NavTL by investigating the following variants:

• w/o-tsc: In this model, traffic lights operate with a fixed plan,
while AVs are controlled by RL.
• w/o-nav: In this model, AVs follow their default path, while
traffic signals are controlled by RL.
• w/o-hrl: removing the hierarchical RL architecture. Here,
both traffic signals and AVs are controlled by RL, but they
perform as independent tasks without collaboration.
• w/o-gnn: removing graph neural networks. In this model, the
inter-signal and signal-vehicle communications are disabled.

Due to space limitation, we provide the results of the ablation study
on the Grid-4x4 30min data in Table 2. From the results we can
conclude that both the traffic signal control module and the navi-
gation module are the most important components of our model.
Moreover, the feudal architecture along with the graph neural net-
works are also effective, since they build the connections among
manager agents and worker agents, promoting signal-signal and
signal-vehicle coordinations.

5.8 Performance at Different Penetration Rates
In addition, we conduct a study on the impact of different AV pene-
tration rates on the improvements in traffic efficiency. The results
on the first 30 minutes of the Grid-4x4 data with three evaluation
metrics are shown in Figure 10, from which we can conclude that
our model performance improves as PR increases from 10% to 50%,
with the most substantial difference between 10% and 30%. This
is reasonable since when the number of AVs is small, the work-
ers’ network might not be trained with sufficient experiences. As
PR increases, more vehicles are able to make rerouting decisions,
contributing to the total travel efficiency.
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Table 1: The Overall Performance of Different Models on Three Datasets.

Data Method Total Delay (s) Travel Time (s) AV Travel Time (s) Waiting Time (s) AV Waiting Time (s)

Grid-4x4

Colight 36.61 (+25.98%) 149.80 (+16.67%) 161.20 (+70.26%) 15.33 (+37.70%) 19.44 (+92.70%)
FMA2C 53.08 (+48.94%) 165.96 (+24.78%) 176.33 (+72.81%) 31.22 (+69.41%) 35.66 (+96.02%)
XRouting 69.07 (+60.76%) 165.83 (+24.72%) 48.41 (+0.97%) 44.68 (+78.63%) 3.03 (+53.41%)
DQN navigation 68.92 (+60.68%) 167.03 (+25.26%) 57.57 (+16.73%) 44.25 (+78.42%) 4.09 (+65.28%)
DQNConcat 30.51 (+11.18%) 125.43 (+0.48%) 68.50 (+30.01%) 9.75 (+2.05%) 1.52 (+6.58%)

NavTL 27.10 124.83 47.94 9.55 1.42

Baoding-19

Colight 27.72 (+26.08%) 167.10 (+12.12%) 179.29 (+53.33%) 13.17 (+31.66%) 15.89 (+70.80%)
FMA2C 34.03 (+39.79%) 172.43 (+14.84%) 186.69 (+55.18%) 15.89 (+43.36%) 23.21 (+80.01%)
XRouting 34.42 (+40.47%) 157.99 (+7.06%) 81.13 (-3.13%) 19.22 (+53.17%) 6.44 (+27.95%)
DQN navigation 34.73 (+41.00%) 158.54 (+7.38%) 82.59 (-1.31%) 19.53 (+53.92%) 6.62 (+29.91%)
DQNConcat 23.83 (+14.02%) 148.38 (+1.04%) 85.55 (+2.02%) 8.58 (-4.90%) 5.00 (+7.20%)

NavTL 20.49 146.84 83.67 9.00 4.64

Hangzhou-4x4

Colight 59.28 (+7.91%) 273.34 (+2.39%) 298.21 (+33.77%) 51.98 (+6.85%) 81.31 (+60.61%)
FMA2C 63.14 (+13.54%) 279.52 (+4.55%) 301.01 (+34.39%) 57.47 (+15.75%) 88.75 (+63.91%)
XRouting 78.29 (+30.27%) 304.41 (+12.36%) 251.79 (+21.56%) 68.75 (+29.57%) 36.79 (+12.94%)
DQN navigation 74.66 (+26.88%) 307.90 (+13.35%) 256.80 (+23.09%) 64.21 (+24.59%) 37.23 (+13.97%)
DQNConcat 65.31 (+16.41%) 291.02 (+8.32%) 223.27 (+11.43%) 53.26 (+9.09%) 34.90 (+8.22%)

NavTL 54.59 266.80 197.50 48.42 32.03
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Figure 9: Training curves for managers (a-c) and workers
(d-f).

Table 2: Ablation Studies.

NavTL w/o-nav w/o-tsc w/o-hrl w/o-gnn

Total Delay (s) 23.00 36.44 68.48 37.76 28.33
Travel Time (s) 112.89 149.84 165.24 141.65 117.54
AV Travel Time (s) 45.89 161.24 48.83 97.35 50.54
Waiting Time (s) 7.56 15.06 44.09 17.00 11.91
AV Waiting Time (s) 1.32 19.14 3.10 11.46 3.59

5.9 Case Study
Moreover, we conduct a case study at 𝑃𝑅 = 50% and provide a
demonstration2 tracking an AV’s trajectory. In the video, the AV un-
der control originally plans to turn left, waiting on the left-turning
lane, but decides to go straight instead due to the congestion in the

2https://youtu.be/iJo544PGgYs

Figure 10: Performance of total delay (left), AV average travel
time (middle), and AV average waiting time (right) at pene-
tration rates 10%, 30%, and 50%, respectively.

left outgoing road. This demo highlights the effectiveness of our
framework in mitigating severe traffic congestion at intersections
by redirecting autonomous vehicles (AVs) to less congested roads.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed NavTL, a graph-enhanced bi-directional
hierarchical reinforcement learning framework to collaboratively
control traffic signal phases and navigation directions of autonomous
vehicles. The results on three datasets demonstrate the effectiveness
of our framework in terms of minimizing overall congestion level
and improving travel efficiency. This is the first work that studies
this joint control task in mixed traffic scenarios using learning-
based method, and it is a stepping stone for the implementation of
Cooperative Vehicle Infrastructure System in the real world. Poten-
tial future research directions include using RL to jointly control
the navigation directions as well as other driving behaviors such as
accelerations and lane-changes of AVs at intelligent intersections.
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