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ABSTRACT
Recent years have witnessed the growing interests in investigating

the competition among companies. Existing studies for company

competitive analysis generally rely on subjective survey data and

inferential analysis. Instead, in this paper, we aim to develop a new

paradigm for studying the competition among companies through

the analysis of talent flows. The rationale behind this is that the

competition among companies usually leads to talent movement.

Along this line, we first build a Talent Flow Network based on

the large-scale job transition records of talents, and formulate the

concept of “competitiveness” for companies with consideration of

their bi-directional talent flows in the network. Then, we propose

a Talent Flow Embedding (TFE) model to learn the bi-directional

talent attractions of each company, which can be leveraged for mea-

suring the pairwise competitive relationships between companies.

Specifically, we employ the random-walk based model in original

and transpose networks respectively to learn representations of

companies by preserving their competitiveness. Furthermore, we

design a multi-task strategy to refine the learning results from a

fine-grained perspective, which can jointly embed multiple talent

flow networks by assuming the features of company keep stable

but take different roles in networks of different job positions. Fi-

nally, extensive experiments on a large-scale real-world dataset

clearly validate the effectiveness of our TFE model in terms of

company competitive analysis and reveal some interesting rules of

competition based on the derived insights on talent flows.
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1 INTRODUCTION
In fast-evolving business environments, the competition among

companies becomes intensified, which results in a critical need for

company competitive analysis. Indeed, with the help of competitive

analysis, companies can conduct prospective strategies and talent

planning, and establish business advantages over competitors. How-

ever, existing studies for company competitive analysis generally

rely on subjective survey data and inferential analysis, such as the

study [9] based on three factors, namely static status, potential de-

velopment and influence factors, for competitiveness measurement.

Due to the lack of large-scale market data for quantitative analysis,

there are limits to deliver the objective analysis of competition.

Recently, the prevalence of online professional platforms (e.g.,

LinkedIn) enables the accumulation of a large number of digital

resumes, which contain rich information about the career paths

of talents [23]. These large-scale data comprehensively describe

the phenomenon of talent flow which represent the job transitions

among different companies. Nowadays, the frequent job-hopping

has become a new norm for employees. For example, as reported

by [2], employees who graduated between 2006 and 2010 have

attempted 2.85 jobs on average during their first five years after

graduation, almost twice the frequency of the seniors between

1986 and 1990. As a result, the massive accumulative job transition

records provide unprecedented opportunities of talent flow analysis.

As an alternative solution, in this paper, we aim to develop a new

paradigm for studying the competition among companies through

the analysis of talent flows. The rationale behind this is that the

competition among companies usually leads to talent movement,

while talent flows can be regarded as one of the significant signs of

competitions among companies.

Along this line, we first build a Talent Flow Network based

on the large-scale job transition records of talents, and formulate

the concept of “competitiveness” for companies with the Personal-

ized PageRank (PPR) proximity by considering their bi-directional

talent flows in both the original and transpose networks. Then,

following the idea of Network Embedding techniques, we propose

a Talent Flow Embedding (TFE) model to learn the bi-directional

talent attractions of each company. Specifically, we define two low-

dimensional vectors for each company to represent its attraction to

talent from other companies, as well as the attraction of its talents to
other companies. With the bi-directional talent attractions of each

company, the pairwise competitive relationships between compa-

nies can be effectively measured. To learn these vectors, we employ

the random-walk based model with Noise Contrastive Estimation

(NCE) in both original and transpose networks to efficiently learn

representations of companies by preserving their competitiveness.

https://doi.org/10.1145/3366423.3380299
https://doi.org/10.1145/3366423.3380299
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Furthermore, we design a multi-task strategy to refine the learning

results from a fine-grained perspective, which can jointly embed

multiple talent flow networks by assuming the features of company

keep stable but take different roles in networks of different job po-

sitions. Finally, extensive experiments on a large-scale real-world

dataset clearly validate the effectiveness of our TFE model in terms

of company competitive analysis and reveal some interesting rules

of competition based on the derived insights on talent flows.

Specifically, the major contributions of this paper can be sum-

marized as follows:

• We develop a new paradigm for company competitive anal-

ysis through the analysis of large-scale talent flow data.

• We propose a TFE model to obtain representations of com-

panies to learn the bi-directional talent attractions of each

company, which can preserve their competitiveness.

• We design a multi-task strategy to refine the TFE model

from a fine-grained perspective, which can integrate the

information of multiple talent flow networks.

• We conduct extensive experiments on a large-scale real-

world data set, which clearly validate the effectiveness of

our TFE model in terms of company competitive analysis

and reveal some interesting rules of competition based on

the derived insights on talent flows.

2 RELATEDWORK
In this section, we will summarize the related works as following

two categories, namely company competitive analysis and network

embedding techniques.

Company Competitive Analysis. As a crucial issue to guide

the strategy planning of companies, competitive analysis has at-

tracted wide attention. Existing techniques, especially those de-

signed by researchers with business background, mainly depend

on statistical analysis or heuristic solutions. For instance, [9] estab-

lishes the competitiveness measurement based on three factors, i.e.,

static status, potential development and influence factors. Also, [36]

reveals the role of information sharing, and [16] discusses more

comprehensive factors, like company size or location, to further

refine the competitiveness measurement. Recently, data mining

techniques are adopted to deal with the competitive analysis task.

For example, [46] introduces a sequential latent variable model

for measuring the competitiveness of companies in terms of talent

recruitment. [17] studies the problem of company profiling based

on collaborative topic regression, which can reveal the competi-

tive edge of different companies. [20] uses a tensor factorization

framework to predict patent litigation, which further indicates the

competitive relationships. [11, 27] identify comparative sentences

(i.e., A vs B) in text document to analyze the competitive rela-

tionships directly. [21, 38] define the edge between companies to

construct network for competitive analysis.

Network Embedding. Traditionally, the learning of low dimen-

sional representation of network structure is achieved through ma-

trix factorization techniques, like LLE [29], GraRep [3], HOPE [25]

and AROPE [43]. Thanks to the recent advances in natural language

processing techniques, current network embedding approaches are

largely based on the random-walk-based sampling, which is firstly

practiced by DeepWalk [28]. Along this line, Node2Vec [5] further

Work Experience

Bill Clinton

• 2017/09 – 2019/06
• Software Engineer
• Work on image packaging system

• 2015/08 – 2017/09
• Software Engineer
• Front end construction

• 2014/03 – 2015/08
• Software Engineer
• App development with Java

Oracle

Amazon

IBM

Figure 1: An example of the resume in our dataset.

improves the random walk to capture the property of homogene-

ity and structural equivalence. APP [45] and VERSE [32] capture

both asymmetric and high-order similarities between node pairs

via random walk strategies. Meanwhile, node representation can

also be learned directly from the structure of graph by using deep

neural networks. For example, DNGR [4] and GAE [13] employ the

auto-encoder with a target proximity matrix to learn correspond-

ing embedding. DRNE [33] and NetRA [41] feed node sequences

to a long short-term memory (LSTM) model to get node embed-

ding. In addition, node attributes [34] and network dynamics [39]

are also considered. Recently, some models are designed for mul-

tiplex network embedding. For instance, MTNE [37] enforces an

extra information-sharing embedding to learn embedding vectors

for each layer in a multiplex network. MELL [22] embeds each

layer into a lower dimensional embedding space and enforces these

embeddings close to others for sharing each layer’s connectivity

among embeddings. PMNE [19] proposes three different approaches

to learn one overall embedding, i.e., network aggregation, result

aggregation and Co-analysis. MNE [42] builds a bridge among dif-

ferent layers by sharing a common embedding across each layer of

the multiplex networks. MCNE [35] represents multiple aspects of

similarity between nodes via designing a binary mask layer. Dif-

ferent from them, our model is more suitable for the scenario of

competitiveness analysis.

3 PRELIMINARIES
In this section, we first introduce the real-world dataset used in our

study, and then formulate the concept of company competitiveness.

At last, we present the problem of Talent Flow Embedding for

Competitive Analysis. For facilitating illustration, Table 1 lists some

important mathematical notations used throughout this paper.

3.1 Data Description
The data used in this paper were collected from LinkedIn

1
, one

of the largest online professional social platform, where users can

build professional profiles as resumes to introduce their work expe-

riences. Specifically, as shown in Figure 1, each resume contains a

list of job experience records, where each record consists of com-

pany name, job title with brief job description and the working

1
http://api.linkedin.com/v2/people
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Table 1: Mathematical notations.

Symbol Description

G(V ,E) The talent flow network with company set V and transition set E;

GT
The transpose network of G;

n,m The number of companies and the number of job positions;

d The dimension size of embedding;

c The size of negative samples;

ϱo (u,v), ϱi (u,v) The PPR proximity of u to v at outflow and inflow networks;

ϱ∗o (u,v), ϱ
∗
i (u,v) The estimated PPR proximity of u to v at outflow and inflow networks;

Su The source vector of company u;
Tu The target vector of company u;
Rk The role embedding for a specific job position network k ;

Sou ,T
o
u The source and target vectors of company u at outflow network;

Siu ,T
i
u The source and target vectors of company u at inflow network.
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Figure 2: The transitivity of talent flow.Given a pair of nodes
(u,v), the horizontal axis is the number of 2-hop (or 3-hop)
paths from u to v. For the blue circle, the vertical axis rep-
resents the connection probability from u to v. As the two
curves increases monotonically, we can claim that the more
paths from u to v there are, the more probability that there
exists an edge from u to v, which reflects the transitivity.

duration recorded in months. More details of our dataset can be

found in Section 5.

The talent flows are formulated as the job transition frequencies

among companies, which can be extracted from the resumes in our

dataset. Obviously, the talent flow is directional and asymmetric,

whichmeans that there exists directed job transitions from company

u tov , but the reverse transitions fromv tou may not exist. Besides,

Figure 2 illustrates the transitivity of talent flow, which means if

there exists job transitions between company u andw , as well as

companyw and v , then it is likely that the job transitions between

u and v also exist.

3.2 Formulation of Company Competitiveness
With the job transition records, we can construct a network struc-

ture to formally describe talent flows, which is defined as follows.

Definition 1 (Talent Flow Network). The talent flow network
is defined asG = (V ,E), whereV presents the set of nodes (companies),
and E presents the set of edges (talent flows). Each edge Ei j indicates
the number of talents hopping from company i to j.

Talent flows can be regarded as the explicit phenomenon that

reflects the potential competition among companies. In turn, the

competition among companies should be able to explain the talent

flows. Thus we can formulate the concept of competitiveness de-

pending on talent flows. The talent flow between two companies is

directed and asymmetric, so does the competitiveness. In addition,

it is intuitive to compare the talent flow to the company competi-

tiveness, when more talents trend to move from company u to v,

the competitiveness of v to u increases. For instance, 100 employees

move from u to v while only 20 employees move to w , then we

thinkv is more competitive thanw with respect to u. However, this
idea just considers the aspect from the source company of talent

flowwhen judging the competition. As for the target aspect, if these

100 employees account for only 10% of the talent source ofv , and 20
employees account for 100% of the talent source ofw , we thinkw
is probably more competitive than v with respect to u, which leads

to the opposite conclusion. To balance the dual situations, we can

formulate the competitiveness of v to u bilaterally by considering

both the outflow situation of source companyu and inflow situation

of target company v .
As mentioned before, talent flow is asymmetric and transitive,

which leads to the assumption that the more and the shorter career

transition paths from company u to v , the more probability that

talents move fromu tov , and the more probability that the talents of

companyv mainly come fromu. Actually, the assumption coincides

with the high-order proximity of nodes in graph, i.e., Personalized

PageRank (PPR) [8, 30]. The PPR proximity of u to v reflects the

probability that a random walk path starting from u and ending at

v . Therefore, we can use the PPR proximity of u to other companies

to represent the corresponding degree that the talents of u move to

others. However, the calculation of PPR proximity is based on the

outgoing edge of each node, we cannot use it to find the main talent

source for a company directly, which depends on the incoming

edges of nodes. Alternatively, by transposing the origin network

G, the nodes pointed from u could represent the talent sources of

u, so that the PPR proximity of u to others in transpose network

GT
can be adapted to represent the degree that the talents of u

mainly come from the others. According to the meaning of edge,

we call the original network G as the outflow network, and the

transpose networkGT
as the inflow network. Here we formulate

the competitiveness of company v to u as follows:

comp(u,v) = ϱo (u,v) · ϱi (v,u), (1)

where ϱ(u,v) denotes the PPR proximity of u to v in network, the

subscript of “o” and “i” represent the outflow networkG and inflow

networkGT
respectively. We denote ϱ(u, ·) as the PPR proximity of

u to other nodes, which satisfies the following recursive equation:

ϱ(u, ·) = (1 − α) · ϱ(u, ·)A + α · r , (2)

where A denotes the transition matrix of the network with normal-

ized rows, α is the jump rate and r is a one-hot vector which is all

zero except the position of u to be 1. Directly calculating ϱ(u, ·) will
take O(n2) time complexity to compute the PPR matrix. However,

the stationary distribution of a random walk with restarting prob-

ability α converges to PPR [26]. Thus, a sample from ϱ(u, ·) is the
end node in a random walk path that starts from node u. According
to the idea of Monte Carlo approach, if we get enough samples,

ϱ(u, ·) can be estimated efficiently.

3.3 Formulation of Talent Flow Embedding
In this paper, we target at revealing the competition among compa-

nies from the perspective of talent flow. Intuitively, the talent flows
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Figure 3: The diagrammatic sketch of TFE.

represent the potential “attractions” for talents of different compa-

nies, which further indicates their competitiveness. Therefore, the

objective of this study is to learn two attraction vectors Su and Tu
from talent flow network G, which are defined as follows.

• Su , the source vector of u, which indicates the attraction of

talents in company u to other companies.

• Tu , the target vector of u, which indicates the attraction of

company u to the talents from other companies.

Formally, the studied problem in this paper can be defined as the

task of Talent Flow Embedding (TFE) as follows.

Definition 2 (Talent Flow Embedding). Given a talent flow
network G = (V ,E). For each node u ∈ V , we aim to learn two low-
dimensional vector representations Su ∈ IRd and Tu ∈ IRd (d << |V |)
to indicate the bi-directional competitiveness.

In the following section, we will introduce the technical details

of our solution for TFE and explain the relationship between the

learned embedding results with the competitiveness.

4 TECHNICAL DETAILS
In this section, we first introduce the formulation of our TFE model.

Then the property of the TFE model will be discussed. Finally, we

design a multi-task strategy to refine the TFE model from a fine-

grained perspective.

4.1 TFE Model Formulation
In the embedding space, we try to learn the representations of

each company for preserving the competitiveness among compa-

nies. According to Equation 1, the competitiveness depends on two

independent components, i.e., the PPR proximities at the inflow

and outflow networks. Therefore, here we can calculate the two

parts separately. Specifically, we divide the source vector and target

vector into two parts:

Su = [S
o
u ,T

i
u ], Tu = [T

o
u , S

i
u ], (3)

where [·, ·] is the operation of vector concatenating. Sou , T
o
u , S

i
u and

T iu represent the source and target vectors at the outflow and inflow

networks respectively, the dimension of them is
d
2
. Furthermore, we

use Sou and T ov to preserve ϱo (u,v), S
i
v and T iu to preserve ϱi (v,u).

The graphical representation of the TFE is shown in Figure 3.

Without loss of generality, here we take the embedding learning

at the outflow network as an example. As the PPR proximity of

company u to other companies can be interpreted as a distribution

with

∑
v ∈V ϱo (u,v) = 1. Meanwhile, we can also generate an esti-

mated distribution ϱ∗o (u, ·) for company u in the embedding space.

We would like to fit the distribution ϱ∗o (u, ·) to ϱo (u, ·). As an opti-

mization objective, our target is to minimize the Kullback-Leibler

(KL) divergence from the given probability distribution ϱo (u, ·) to
that of ϱ∗o (u, ·) in the embedding space:∑

u ∈V
KL (ϱo (u, ·) | | ϱ

∗
o (u, ·)). (4)

To define the closeness between two nodes u, v in the embedding

space, we choose the inner product of the u’s source vector and
v’s target vector Sou ·T

o
v as the distance from u to v . Then Sov ·T

o
u

denotes the distance from v to u, so that the asymmetry of compet-

itiveness can be captured. Moreover, the proximity distribution in

the embedding space is normalized by softmax function:

ϱ∗o (u,v) =
exp(Sou ·T

o
v )∑

w ∈V exp(Sou ·T
o
w )
. (5)

By Equation 4, we aim to minimize the KL-divergence from ϱo to
ϱ∗o , which is equivalent to minimize the cross-entropy loss function:

Lo = −
∑
u ∈V

ϱo (u, ·) log(ϱ
∗
o (u, ·)). (6)

To solve Equation 6, the Stochastic Gradient Descent (SGD)

method can be used directly. Nevertheless, the direct optimization

of this task is computationally expensive, since the denominator

of ϱ∗o (u,v) requires the summation over all nodes in the network.

Thus, to improve the training efficiency, we adopt the Noise Con-

trastive Estimation (NCE) method [6, 24], which is used to estimate

unnormalized continuous distributions. The idea of NCE is to train

a binary classifier to distinguish node samples coming from the

empirical distribution ϱo (u, ·) or generated by a noise distribution

Φn . Specifically, suppose the random variable D represents node

classification, such that D = 1 represents a node drawn from the

empirical distribution and D = 0 represents a sample drawn from

the noise distribution. According to the NCE method, we draw

a node u from a default distribution Φe at first, and then draw a

node v from the empirical distribution of ϱo (u, ·) and c nodes from
the noise distribution Φn . Finally, the origin objective function is

transformed to maximize the following function:

Lon =
∑
u∼Φe

v∼ϱo (u, ·)

[log Pou (D = 1|v,θo ) + cEx∼Φn log Pou (D = 0|x ,θo )],

(7)

where θo = {So ,T o } denotes the parameters of model, c denotes
the number of noise samples and the conditional probability Pou (D |·)
is calculated as follows:

Pou (D = 1|v,θo ) = σ (Sou ·T
o
v − log c · Φn ),

Pou (D = 0|v,θo ) = 1 − σ (Sou ·T
o
v − log c · Φn ),

(8)

where σ (x) = 1

1+e−x is the sigmoid function. As the number of

noise samples c increases, the negative NCE gradient approaches to

the cross-entropy gradient. Besides, the convergence of NCE does

not depend on the choice of distribution Φe and Φn [7], but the

noise distribution Φn influences the performance of NCE [14]. In

this paper, inspired by the idea of [32], we set both distributions Φe
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and Φn as
1

n , where n denotes the number of nodes. Similarly, we

can obtain the NCE loss for the inflow network GT
as below:

Lin =
∑
u∼Φe

v∼ϱi (u, ·)

[log P iu (D = 1|v,θ i ) + cEx∼Φn log P iu (D = 0|x ,θ i )],

(9)

where θ i denotes the parameters {Si ,T i }. Combining the loss of

inflow and outflow network representation, we can get the final

objective:

Ln = L
o
n + L

i
n . (10)

The objective function can be solved by the SGDmethod. After that,

we can get the corresponding embeddings Sou , S
i
u , T

o
u and T iu . The

final embeddings of company u can be calculated by the Equation 3.

4.2 Property of TFE
Now we analyze the property of the proposed TFE model. We prove

the learned embeddings implicitly preserve the competitiveness of

any pair of nodes. Since Su ·Tv = Sou ·T
o
v +S

i
v ·T

i
u , here we take the

first part as an example, i.e., Sou ·T
o
v , whose optimization objective

function is shown in Equation 7. Following the idea of [15], when

the dimension of the vector is sufficiently large, the objective can

be treated as a function of each independent Sou · T
o
v term. The

Equation 7 can be rewritten as:

L′ =
∑
u

∑
v
Z · ϱo (u,v) · {logσ (S

o
u ·T

o
v − log

c

n
)

+
c

n

∑
x

logσ (−(Sou ·T
o
x − log

c

n
))}

= Z{
∑
u

∑
v

ϱo (u,v) · logσ (S
o
u ·T

o
v − log

c

n
)

+
∑
u

∑
x

c

n
logσ (−(Sou ·T

o
x − log

c

n
))}

= Z{
∑
u

∑
v
[ϱo (u,v) · logσ (S

o
u ·T

o
v − log

c

n
)

+
c

n
logσ (−(Sou ·T

o
v − log

c

n
))]},

(11)

whereZ denotes the sample size. To maximize the objective, we

set the partial derivative of each independent Y = Sou ·T
o
v be zero,

∂L′

∂Y
= Z{−(ϱo (u,v) +

c

n
)σ (Y − log

c

n
) + ϱo (u,v)}. (12)

Afterwards, we can obtain:

Y = Sou ·T
o
v = loд(ϱo (u,v)). (13)

Similarity, Siu ·T
i
v has the similar property. Hence, the inner product

of Su and Tv can be calculated as follows:

Su ·Tv = log(ϱo (u,v)) + log(ϱi (u,v)) = log(comp(u,v)). (14)

Obviously, Su ·Tv preserves the competitiveness of v to u.

4.3 Multi-Task Strategy for TFE
As our basic TFE model has been introduced, in this subsection,

we discuss how to refine the basic model to learn more compre-

hensive embedding for companies based on multiple talent flow

networks. We realize that even for the same company, the talent

flow in different job positions could be different. The concerns may

be different for talents with different job positions when deciding

a company to hop. e.g., engineers are more likely to be attracted

by the companies with high-innovation and high-welfare, while

salesperson are more likely to choose companies with big brands

and good products. We assume that the features of company keep

stable in different job position networks, while these features play

different roles for attracting talents.

Indeed, each dimension of the attraction vectors, i.e., Su and Tu ,
can be treated as a kind of feature. In the formulation of Multiple

Talent Flow Embedding (MTFE), we set Su and Tu as the overall

embedding for company u and keep them the same in all job posi-

tion networks. As mentioned before, we use Su ·Tv =
∑d
j=1 SujTv j

to indicate the competitiveness of v to u, where d is the dimension

size. Directly calculating the inner product presumes a strong as-

sumption that each dimension in the embedding space is equally

important. To show the importance of different features, we ex-

pand the two-way inner product to the three-way tensor product

by introducing a role vector Rk for each job position k , of which
each dimension Rk j is used to represent the importance of the j-
th feature in job position k . Then the j-th feature’s influence to

the competitiveness of v to u at the job position k is calculated as

(Rk j · Suj ·Tv j ). As a result, the competitiveness of company v to u
at the job position k can be calculated as follows:

(Su ⊙ Tv ) · Rk =
d∑
j=1

Suj ·Tv j · Rk j , (15)

where the ⊙ denotes the cross product operation. Moreover, we

limit each dimension of the role vector between 0 and 1 to prevent

gradient explosion.

In MTFE, we also consider the inflow and outflow network sepa-

rately following the idea of TFE. Thus we define the correspond-

ing role vectors as Rok and Rik , so that Rk = [R
o
k ,R

i
k ] . We aim to

minimize the expectation sum of cross-entropy loss over multiple

networks, which leads to the following objective function:

L = −
∑
k

∑
u ∈V
{ϱko (u, ·) log(ϱ

∗k
o (u, ·)) + ϱ

k
i (u, ·) log(ϱ

∗k
i (u, ·))},

(16)

where the superscript k denotes the variable of a specific job posi-

tion network k , the superscript ∗ denotes the estimated result in

embedding space. Besides, the NCE method is also used to estimate

the original loss, hence we turn to maximize the following:

L∗ =
∑
k

∑
u∼Φe

v∼ϱki (u, ·)

[log P iku (D = 1|v,θ ) + cEx∼Φn log P iku (D = 0|x ,θ )]

+
∑
k

∑
u∼Φe

v∼ϱko (u, ·)

[log Poku (D = 1|v,θ ) + cEx∼Φn log Poku (D = 0|x ,θ )],

(17)

where θ = {S,T ,R} denotes the parameters of MTFE, the condi-

tional probability Poku (D |·) can be calculated as follows:

Poku (D = 1|v,θ ) = σ ((Sou ⊙ T
o
v ) · R

o
k − log c · Φn ),

Poku (D = 0|v,θ ) = 1 − σ ((Sou ⊙ T
o
v ) · R

o
k − log c · Φn ),

s .t . ∀j ∈ [1,d], 0 ≤ Rok j ≤ 1.

(18)
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The calculation of P iku (D |·) is similar to Poku (D |·). After learning all
the parameters, we can concatenate the corresponding vectors to

get the overall embeddings Su and Tu for each company, as well as

the role vector Rk for each job position.

4.4 MTFE Model Learning
Here we introduce how to learn the parameters of MTFE model. As

for the source and target vectors of each company at the outflow

and inflow networks, i.e., Sou ,T
o
u , S

i
u andT iu , we use the SGDmethod

to learn them directly. As for the role vectors of each job position k ,
i.e., Rok and Rik , they must be bound between 0 and 1. So we employ

the Projected Gradient (PG) [18] to learn them. Given a sample pair

(u,v) at the outflow or inflow network of job position k , the update
rule for the j-th dimension of Rok or Rik is shown as follows:

Rok j ← f (Rok j − η(D − σ ((Su ⊙ Tv ) · R
o
k − log

c

n
) · Suj ·Tv j ))),

Rik j ← f (Rik j − η(D − σ ((Su ⊙ Tv ) · R
i
k − log

c

n
) · Suj ·Tv j ))),

(19)

where η is the learning rate, D is an indicator number that equals

0 if the node pair (u, v) is sampled from the noise distribution Φn ,
and 1 otherwise. And the function f (x) is defined as follows:

f (x) =


0, if x < 0,

x , elif 0 ≤ x ≤ 1,

1, otherwise.

(20)

Algorithm 1 describes the optimization process of the MTFE model.

ALGORITHM 1: Multiple Talent Flow Embedding (MTFE)

Require: Set of talent flow networks{Gk }, sample size Z, learning rate

η, noise distribution Φn , negative samples size c , dimension size d .
Ensure: Embedding vectors for v ∈ V and role vectors for Gk

.

1: {Gko } ← {Gk }, {Gki } ← {transpose of Gk
}

2: So , T o , Ro ← TFME ({Gko })

3: S i , T i , Ri ← TFME ({Gki })

4: S, T , R ← concatenate the corresponding vectors

5: Function TFME ({Gk })

6: S ← N(0, d−1), T ← N(0, d−1)
7: R ← [d−1, d−1, ..., d−1]
8: for i = 1 to Z do
9: k ∼ uniform(1,m)
10: u ∼ uniform(1, n)
11: v ∼ ϱ(u, ·) in Gk

12: Su, Tv , Rk ← UpdateByPair(u, v, k, 1)
13: for j = 1 to c do
14: x ∼ Φn
15: Su, Tx , Rk ← UpdateByPair(u, x, k, 0)
16: Return S , T , R
17: Function UpdateByPair (u, v, k, D)
18: д ← (D − σ ((Su ⊙ Tv ) · Rk − log c · Φn )) · η
19: Su ← д · Tv · Rk , Tv ← д · Su · Rk
20: Rk ← Update according to Equation 19

4.5 Complexity Analysis
The main execution time of both TFE and MTFE are determined by

the optimization process. Given d as the embedding dimensionality,

Table 2: Statistics of each job position network.

Dataset #Nodes #Aligned Nodes #Edges #Resumes

Engineer 15,237 15,244 311,567 596,058

Consultant 15,236 15,244 310,613 486,682

Salesperson 15,243 15,244 263,725 533,549

Operator 15,241 15,244 281,860 407,143

n as the number of nodes,m as the number of job position network

andZ as the number of samples. The overall time complexity of

TFE is O(Zdn), and that of MTFE is O(Zmdn) which is close tom
times of the previous one. Apart from this, the space complexity of

MTFE processes isO((n+m)d), which is efficient for other practical

applications due to thatm ≪ n.

5 EXPERIMENTS AND DISCUSSIONS
In this section, we evaluate the proposed model with a number of

baselines on a large-scale dataset. Meanwhile, many discussions and

case studies on company competition analysis will be presented.

5.1 Experimental Setting
Data Pre-processing. In our real-world dataset, there are more

than 400 million professional resumes. We set the observational

time window as 3 years from January 1st, 2015 to December 31, 2017.

At first, we employed the methods mentioned in [44] to extract the

job transition records from the resumes. Then we utilized the API

called MonkeyLearn
2
to normalize the job titles, which categorized

the original job titles according to the job description written in the

resumes, then we got 26 job positions. Afterwards, we removed the

resumes of employees who only stayed in the same company and

filtered the companies which appeared less than 800 times to avoid

noise. Finally, we obtained the job transitions among the filtered

companies in the remained resumes. Totally, 15,244 companies and

7,066,978 job transitions were extracted.

Dataset Splitting.We selected 4 common job positions to analyze

the competition, they are Salesperson, Consultant, Operator and

Engineer. In detail, for each job position, only job transitions fitting

the position would be kept. After that, four job positions led to four

talent flow networks. The number of nodes in each network is a

little different, and to better compare the single and the multiple

network embedding methods, here we aligned the nodes set by

adding nodes with degree equals to 0. Some statistics about these

datasets are summarized in Table 2.

5.2 Baseline
To evaluate the performance of the proposed models, we compared

our model with following network embedding algorithms:

• DeepWalk [28]: which takes the truncated random walks for

each node to generate the training corpus of node sequences, and

then learns the node embedding via maximizing the likelihood

of context node prediction from the center nodes. We used the

default parameters mentioned in the original paper, i.e., walk

length l = 80, number of walks γ = 80 and window sizew = 10.

2
https://app.monkeylearn.com/main/classifiers
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Figure 4: The average performance of each model with different proportion of training edges.

• Node2Vec [5]: which designs a biased truncated random walks

to efficiently explore diverse neighborhoods by adding two pa-

rameters p and q. Here we set p = 2, q = 0.5 and the other param-

eters were the same as DeepWalk.

• LINE [31]: which learns the network embedding by preserving

the first-order proximity and second-order proximity of network

structure separately. It learns d/2 dimensions using first-order

proximity and learns anotherd/2 dimensions using second-order

proximity. The final embeddings are obtained by concatenating

two parts. We set the negative samples s to 5.

• HOPE [25]: which aims to preserve high-order similarity of

nodes and capture asymmetric transitivity. HOPE learns embed-

dings using a generalized SVD framework. Here we selected the

RPR similarity, and set the decay probability α as 0.15.

• APP [45]: which estimates the PPR proximity between each pair

of nodes to capture both asymmetric and high-order similarities

among them. We set the number of samples per node to 5000

and the decay factor α to 0.15.

• VERSE [32]: which uses the PPR, Adjacency and SimRank as

the proximities and learns embedding by the skip-gram model.

Here we chose the PPR proximity for best performance. Besides,

we set the damping factor α to the default value 0.85, and the

size of noise samples to 3.

• VGAE [13]: which is a model for unsupervised learning on

graph-structured data under the Variational Auto-Encoder (VAE)

framework. It applies Graph Convolutional Network (GCN) [12]

as the encoder and the inner product of embeddings as decoder.

Here we replaced the usual symmetric normalization ofA by the

out-degree normalization D−1out (A + I ) for directed graphs.

• GAE [13]: which is a variant model of VGAE by using the auto-

encoder(AE) framework. We used the same setting as VGAE.

The approaches introduced above are designed for single net-

work, we also chose severalmultiple network embedding approaches.

• PMNE [19]: which proposes three different models to multiplex

networks, such as network aggregation, result aggregation and

Co-analysis. We compared all three models and chose the best

one PMNE(r), which applied the result aggregation based on

Node2vec. The parameters were the same as Node2vec.

Table 3: The AUC scores for differentmodels on the link pre-
diction task.

Method Consultant Salesperson Engineer Operator

Common Nbrs 0.7358 0.6927 0.7739 0.7521

Jaccard 0.7667 0.7237 0.8022 0.7791

Adamic Adar 0.7360 0.6934 0.7739 0.7533

DeepWalk 0.8312 0.8312 0.8568 0.8458

Node2Vec 0.8276 0.8276 0.8537 0.8425

LINE 0.8053 0.7314 0.8552 0.8110

APP 0.8538 0.8473 0.8582 0.8599

HOPE 0.8373 0.8395 0.8532 0.8735

GAE 0.8624 0.8470 0.8742 0.8813

GVAE 0.8561 0.8418 0.8664 0.8698

VERSE 0.9044 0.8925 0.9011 0.8950

PMNE 0.8534 0.8450 0.8618 0.8534

MNE 0.8384 0.8402 0.8667 0.8598

TFE 0.9059 0.8954 0.9029 0.9075

MTFE 0.9298 0.9212 0.9214 0.9267

• MNE [42]: which represents information of multi-type relations

into a unified embedding space by using a high-dimensional com-

mon embedding and a lower-dimensional additional embedding

for each type of relation to represent each node. The dimension

of the additional vectors was set to be 10.

For the task of link prediction, we also selected three heuristic

algorithms, which are commonly used for link prediction, including:

• Common Neighbors: i.e., |N (u) ∩ N (v)|,

• Jaccard Coefficient: i.e., |N (u)∩N (v) |
|N (u)∪N (v) | ,

• Adamic Adar: i.e.,
∑
t ∈N (u)∩N (v)

1

loд |N (t ) | ,

where N (u) denotes the set of neighbors of u.

5.3 Validations on Link Prediction
Similar as other network embedding tasks, here we first validate the

effectiveness of our TFE models via the link prediction task. Since

the competition of companies leads to talent flows, so that link

prediction is a good task to evaluate the attraction representations.
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Figure 5: The degree distributions of Engineer network and predicted distributions of DeepWalk, VERSE, APP and TFE.

Specifically, we conducted the validations on all the four data

sets. In each dataset, we randomly removed 50% of edges as the

positive samples in test sets, while the rest were treated as training

samples. At the same time, we also expanded the test set by ran-

domly sampling an equal number of node pairs as negative samples,

which have no edge connecting them.

For all embedding based models, the dimension of embedding

vector was set to 128. As for the multiple network embedding

models, we learned jointly on four networks and evaluated on each

one respectively. Furthermore, as for the TFE and MTFE, we drew

3 negative samples for each positive one and set the jump rate α
as 0.85. Given a node pair (u,v), we adopted the inner product of

the corresponding embedding vector of u and v to estimate the

similarity score, i.e., Su ·Tv for asymmetric models, e.g., Hope and

APP, and Su · Sv for symmetric models, e.g., Deepwalk and VERSE.

Along this line, we selected AUC as the valuation index.

The results are summarized in Table 3. Obviously, our TFE meth-

ods, even the simplified TFEwithout themulti-task strategy, achieve

the relatively better performance than all of the baselines. Moreover,

we have the following observations. First, the heuristic methods

always get the worst performance, since they just consider the

direct neighbor information and fail to describe the structure in full

view. Second, we realize that techniques which preserve high-order

similarity for nodes can get good performance, such as APP and

VERSE. However, VERSE always gets much better performance

than APP though both of them can preserve the PPR proximity.

This is because the asymmetry of talent flow is not very obvious,

which weakens the performance of asymmetric preserved models

to some extent. Third, jointly modeling multiple networks is helpful

to get better performance. For instance, MTFE gets better perfor-

mance than TFE in all datasets. Last, PMNE and MNE are much

better than their underlying model designed for a single network,

i.e., Node2vec. However, they are not as good as our MTFE model,

because they are limited by the underlying algorithm, so that the

results further demonstrate the effectiveness of our TFE model.

In addition, we also discuss how the performance of each model

be influenced by the different training ratios. Figure 4 shows the

average performance of each model on all networks. Clearly, the

performances of most models improve with the training ratio in-

creasing. Meanwhile, the results of different training ratios are

consistent with that mentioned before.

To summarize, our models outperform most of the other base-

lines, and the stable results suggest their robustness.

Table 4: TheNDCG@KScores for linkweight prediction. All
the numbers are the averaged value at four job networks.

Method NDCG@5 NDCG@10 NDCG@20 NDCG@50

DeepWalk 0.0454 0.0511 0.0590 0.0758

Node2Vec 0.0388 0.0434 0.0506 0.0657

LINE 0.0624 0.0648 0.0688 0.0784

APP 0.1496 0.1650 0.1836 0.2125

HOPE 0.0629 0.0617 0.0642 0.0724

GAE 0.0104 0.0108 0.0127 0.0189

GVAE 0.0035 0.0047 0.0059 0.0105

VERSE 0.2021 0.2168 0.2357 0.2638

PMNE 0.0692 0.0769 0.0877 0.1078

MNE 0.0412 0.0474 0.0560 0.0737

TFE 0.2183 0.2350 0.2536 0.2802

MTFE 0.2318 0.2513 0.2730 0.3021

5.4 Validations on Link Weight Prediction
The task of link prediction targets at judging the existence of job

transitions among companies, so we further predict the degree

of talent flows. Specifically, we split job transitions by year, and

chose the job transitions between 2015 and 2016 as the training set,

and that in 2017 as the test set. Then we trained all models with

parameters as same as link prediction. Moreover, the inner product

of nodes indicated the prediction score. Given a node u, we ranked
the others according to the prediction scores. Finally, we evaluated

the performance of the predicted rank list by using the Normalized

Discounted Cumulative Gain (NDCG@K, K = 5, 10, 20, 50) index.

The higher value of NDCG@K is, the better result is obtained.

The results are summarized in Table 4. Actually, this task is chal-

lenging because of the dynamic nature of talent flow. Despite of

this, our TFE models consistently achieve the best performances

compared with baselines. Some models cannot effectively handle

this task even if they are effective on link prediction, such as the

GCN based model. This is due to they cannot make full use of infor-

mation from the weight of edges. Besides, although LINE performs

poorly on link prediction, it is more effective than the DeepWalk

and Node2vec. Because Line uses the weight of edges to construct

model’s objective. Finally, we also observe that themultiple network

embedding approaches are more effective than the underlying one,

which further indicates the effectiveness of integrating multiple

network information when representing a node.



Large-Scale Talent Flow Embedding for Company Competitive Analysis WWW ’20, April 20–24, 2020, Taipei, Taiwan

Dimension

4
8

16
32

64
128

256
512

Rate

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

AUC

0.5

0.6

0.7

0.8

0.9

1.0

(a) TFE

Dimension

4
8

16
32

64
128

256
512

Rate

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

AUC

0.5

0.6

0.7

0.8

0.9

1.0

(b) MTFE

Figure 6: The performances of TFE andMTFE with different
dimension size and jump rate.

5.5 Validations on Graph Reconstruction
Furthermore, we performed the graph reconstruction task by judg-

ing if the representation could capture the in/out-degree distri-

bution of the talent flow network. Specifically, here we take the

Salesperson network as an example. We firstly trained the TFE

model on the Salesperson network. Then we ranked node pairs (u,
v) according to the inner product of the corresponding vectors, i.e.,

Su ·Tv for asymmetric models, such as TFE and APP, and Su · Sv
for symmetric models, such as DeepWalk and VERSE. Finally, we

took the top-|E | pairs of nodes without self-loop to reconstruct the

graph, where |E | is the number of edges in the original graph.

Here we show the performances of two symmetric models, i.e.,

DeepWalk and VERSE, and two asymmetric models, i.e., APP and

our basic model TFE. Figure 5(a) shows the original degree distri-

bution of the Salesperson network, and the other parts of Figure 5

show the result of different models. Obviously, the generated in/out-

degree distributions of the symmetric models are identical, because

they just learn one vector for a node. In addition, the in-degree

distributions of VERSE and APP are similar to the original distribu-

tion. As mentioned in [1, 40], the in-degree distribution and PPR

proximity follow the same distribution so that the PPR similarity

preserved models can capture the in-degree distribution of talent

flow network. Furthermore, the in-degree and out-degree distribu-

tions of original network are very similar so that the out-degree

distribution generated by VERSE is similar to original network. To

some extent, it can explain why VERSE always gets the comparable

performance in the above tasks. And we find that our TFE model

is the only one that can generate both in/out-degree distributions

similar to that of the original graph, because the TFE model pre-

serve the PPR similarity in both inflow and outflow network, i.e, G
andGT

, and the in-degree ofGT
is equivalent to the out-degree of

G. As a result, the out-degree distribution of G can be captured.

5.6 Parameter Sensitivity
Afterwards, we turn to discuss the sensitivity of the parameters of

the TFE and MTFE. We evaluated the performances on link predic-

tion task with 50% training edges. Specifically, three parameters

will be discussed, namely the dimension of embedding vector d , the
size of negative samples c and the jump rate α .

Firstly, we discuss the sensitivity of the dimension size, which

are summarized in Figure 6. Clearly, we find that generally the
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Figure 7: The performances of TFE andMTFE with different
number of noise samples.

increasing d improves the performance, which could be reasonable

as more dimensions may probably keep more useful information.

However, there is no significant improvement when d is more than

128, which explains why we set d as 128 in our overall experiments

to keep the balance between effectiveness and efficiency.

Secondly, we discuss the sensitivity of jump rate, which is also

shown in Figure 6. We realize that a relatively larger α may lead

to better results, as the longer paths are useful to capture the high-

order relationship. However, when α is larger than 0.85, the per-

formance drops significantly. This phenomenon illustrates that the

overlong paths may disturb the effectiveness as outliers.

Finally, we verify the impact of the number of negative samples,

as shown in Figure 7. Obviously, the performances fluctuate in a

small range. According to [24, 32], the theoretical guarantees of

NCE depend on the number of negative samples, yet small values

work well in practice, and our result further proves it.

5.7 Case Study
Finally, in this part, some case studies will be presented to illus-

trate competitive analysis, and reveal some interesting rules of

competition based on the derived insights on talent flows.

5.7.1 Competitor Analysis. In this case study, we would like to

reveal the biggest competitors of the given company. We selected

Google as an example, for each job transition network, we adopted

((Su ⊙ Tv ) · Rk ) to calculate the competitiveness of company v to

u (i.e., Google). Then we sorted the companies according to the

competitiveness scores to get the top-n competitor.

The results are shown in Figure 8, where the size of name in-

dicates the degree of competition. Obviously, we realize that the

distribution of the competitors is quite different, which proves that

the effectiveness of the role embedding Rk . For different job posi-
tion, the features of the company take the different roles. As for the

Engineer network, we find the top competitors are most high-tech

companies (e.g., Facebook and Microsoft). For the Consultant net-

work, the famous law firms (e.g., Ernstandyoung and Accenture)

and management consulting firms (e.g., Accenture and IBM) be-

come more attractive. One interesting finding is that Facebook in

most cases is very competitive with Google, but in the network of

Operator, it is not so competitive.

Also, apart from the competitors detection in a specific network,

as Su andTu represent the essential features of companies. To detect
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Figure 8: The top-20 competitors for Google in four different
job positions.
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Figure 9: The top-20 overall competitors forGoogle and Face-
book respectively.

the direct competitors in a full view, we use the (Su ·Tv ) directly.
Figure 9 shows the top-20 competitors of Google and Facebook.

Comparing the overall competition results of Google with com-

petitions of a specific job position, the overall competition can be

treated as the combination of the specific competitions. The result

of comparison shows the effectiveness of the multi-task strategy.

Besides, comparing the result of Google and Facebook, we discover

that they are the biggest competitor for each other.

5.7.2 Clustering on Bi-directional Attraction. We conducted the

MTFE model on the entire data to get the embedding for each

companyu, S andT . Then we used the K-means [10] to cluster com-

panies, according to the embedding to get 20 clusters and further

projected these nodes into a two-dimension space.

Figure 10 shows the clustering result of the source vector Su ,
which summarizes the similar companies for the attraction of their

talents. Obviously, we find that companies in similar industry are

likely to cluster together. For example, the high-tech internet com-

panies, such as Google and Baidu, are clustered together. And the
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Figure 10: Clustering for attraction to talents.
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Figure 11: Clustering for attraction from talents.

hotel service companies, such as Sheraton and Hyatt-Regency are

clustered together. Besides, K-means based on Tu is also conducted

to summarize the similar companies in attracting talents, which

is shown in Figure 11. Interestingly, we find that the clusters in

Figure 10 are broken up, as companies now are clustered mainly

based on their countries.

Considering that Su reflects the attraction of talents in u, talents
of the companies with the similar business are attractive for the oth-

ers in the same industry, so that clustering on Su reflects companies

in similar industry. On the contrary, Tu denotes how company u
attracts talents from other companies. Since job transitions usually

happen in the same country, it is reasonable for partition companies

via country and business.

6 CONCLUSION
In this paper, we studied the problem of company competitive

analysis from the perspective of talent flows. Specifically, we for-

mulated the concept of “competitiveness” for companies with the

PPR proximity. Then we proposed a TFE model to learn represen-

tations of companies to learn the bi-directional talent attractions

of each company, which could preserve their competitiveness. Fur-

thermore, we designed a multi-task strategy to refine the TFEmodel

by integrating the information of multiple talent flow networks. Fi-

nally, extensive experiments conducted on a large-scale real-world

dataset clearly validated the effectiveness of the proposed models

and revealed some interesting rules of competition based on the

derived insights on talent flows.
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